Solution 2.2:3b

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_2_3b.gif </center> {{NAVCONTENT_STOP}})
Current revision (14:15, 28 October 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
If we are to succeed in simplifying the integral with a substitution, we must find an expression <math>u = u(x)</math> so that the integral can be written as
-
<center> [[Bild:2_2_3b.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\int \left(\begin{matrix}
 +
\text{something}\\
 +
\text{in u}
 +
\end{matrix}\right)\cdot {u}'\,dx\,\textrm{.}</math>}}
 +
 
 +
As our integral is written,
 +
 
 +
{{Displayed math||<math>\int\sin x\cos x\,dx</math>}}
 +
 
 +
we see that the second factor <math>\cos x</math> is a derivative of the first factor, <math>\sin x</math>. If <math>u=\sin x</math>, the integral can thus be written as
 +
 
 +
{{Displayed math||<math>\int u\cdot u'\,dx</math>}}
 +
 
 +
and this makes <math>u=\sin x</math> an appropriate substitution,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\int \sin x\cos x\,dx
 +
&= \left\{ \begin{align}
 +
u &= \sin x\\[5pt]
 +
du &= (\sin x)'\,dx = \cos x\,dx
 +
\end{align} \right\}\\[5pt]
 +
&= \int u\,du\\[5pt]
 +
&= \frac{1}{2}u^{2} + C\\[5pt]
 +
&= \frac{1}{2}\sin^2\!x + C\,\textrm{.}
 +
\end{align}</math>}}

Current revision

If we are to succeed in simplifying the integral with a substitution, we must find an expression \displaystyle u = u(x) so that the integral can be written as

\displaystyle \int \left(\begin{matrix}

\text{something}\\ \text{in u} \end{matrix}\right)\cdot {u}'\,dx\,\textrm{.}

As our integral is written,

\displaystyle \int\sin x\cos x\,dx

we see that the second factor \displaystyle \cos x is a derivative of the first factor, \displaystyle \sin x. If \displaystyle u=\sin x, the integral can thus be written as

\displaystyle \int u\cdot u'\,dx

and this makes \displaystyle u=\sin x an appropriate substitution,

\displaystyle \begin{align}

\int \sin x\cos x\,dx &= \left\{ \begin{align} u &= \sin x\\[5pt] du &= (\sin x)'\,dx = \cos x\,dx \end{align} \right\}\\[5pt] &= \int u\,du\\[5pt] &= \frac{1}{2}u^{2} + C\\[5pt] &= \frac{1}{2}\sin^2\!x + C\,\textrm{.} \end{align}