2.1 Exercises

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (2.1 Övningar moved to 2.1 Exercises: Robot: moved page)
Current revision (10:55, 28 October 2008) (edit) (undo)
m
 
(5 intermediate revisions not shown.)
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Ej vald flik|[[2.1 Introduction to integrals|Theory]]}}
+
{{Not selected tab|[[2.1 Introduction to integrals|Theory]]}}
-
{{Vald flik|[[2.1 Övningar|Exercises]]}}
+
{{Selected tab|[[2.1 Exercises|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
Line 22: Line 22:
|width="50%"| <math>\displaystyle\int_{-1}^{2}|x| \, dx</math>
|width="50%"| <math>\displaystyle\int_{-1}^{2}|x| \, dx</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.1:1|Solution a|Lösning 2.1:1a|Solution b|Lösning 2.1:1b|Solution c|Lösning 2.1:1c|Solution d|Lösning 2.1:1d}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.1:1|Solution a|Solution 2.1:1a|Solution b|Solution 2.1:1b|Solution c|Solution 2.1:1c|Solution d|Solution 2.1:1d}}
===Exercise 2.1:2===
===Exercise 2.1:2===
Line 38: Line 38:
|width="50%"| <math>\displaystyle\int_{1}^{4} \displaystyle\frac{\sqrt{x}}{x^2}\, dx</math>
|width="50%"| <math>\displaystyle\int_{1}^{4} \displaystyle\frac{\sqrt{x}}{x^2}\, dx</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.1:2|Solution a|Lösning 2.1:2a|Solution b|Lösning 2.1:2b|Solution c|Lösning 2.1:2c|Solution d|Lösning 2.1:2d}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.1:2|Solution a|Solution 2.1:2a|Solution b|Solution 2.1:2b|Solution c|Solution 2.1:2c|Solution d|Solution 2.1:2d}}
===Exercise 2.1:3===
===Exercise 2.1:3===
Line 54: Line 54:
|width="50%"| <math>\displaystyle\int \displaystyle\frac{x^2+1}{x}\, dx</math>
|width="50%"| <math>\displaystyle\int \displaystyle\frac{x^2+1}{x}\, dx</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.1:3|Solution a|Lösning 2.1:3a|Solution b|Lösning 2.1:3b|Solution c|Lösning 2.1:3c|Solution d|Lösning 2.1:3d}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.1:3|Solution a|Solution 2.1:3a|Solution b|Solution 2.1:3b|Solution c|Solution 2.1:3c|Solution d|Solution 2.1:3d}}
===Exercise 2.1:4===
===Exercise 2.1:4===
Line 74: Line 74:
|width="100%"| Calculate the area of the region given by the inequality, <math>x^2\le y\le x+2</math>.
|width="100%"| Calculate the area of the region given by the inequality, <math>x^2\le y\le x+2</math>.
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.1:4|Solution a|Lösning 2.1:4a|Solution b|Lösning 2.1:4b|Solution c|Lösning 2.1:4c|Solution d|Lösning 2.1:4d|Solution e|Lösning 2.1:4e}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.1:4|Solution a|Solution 2.1:4a|Solution b|Solution 2.1:4b|Solution c|Solution 2.1:4c|Solution d|Solution 2.1:4d|Solution e|Solution 2.1:4e}}
===Exercise 2.1:5===
===Exercise 2.1:5===
Line 81: Line 81:
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="100%"| <math>\displaystyle \int \displaystyle\frac{dx}{\sqrt{x+9}-\sqrt{x}}\quad</math> (HINT: multiply the top and bottom by the conjugate of the denominator)
+
|width="100%"| <math>\displaystyle \int \displaystyle\frac{dx}{\sqrt{x+9}-\sqrt{x}}\quad</math> (Hint: multiply the top and bottom by the conjugate of the denominator)
|-
|-
|b)
|b)
-
|width="100%"| <math>\displaystyle \int \sin^2 x\ dx\quad</math> (HINT: rewrite the integrand using a trigonometric formula)
+
|width="100%"| <math>\displaystyle \int \sin^2 x\ dx\quad</math> (Hint: rewrite the integrand using a trigonometric formula)
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.1:5|Solution a|Lösning 2.1:5a|Solution b|Lösning 2.1:5b}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.1:5|Solution a|Solution 2.1:5a|Solution b|Solution 2.1:5b}}

Current revision

       Theory          Exercises      

Exercise 2.1:1

Interpret each integral as an area, and determine its value.

a) \displaystyle \displaystyle\int_{-1}^{2} 2\, dx b) \displaystyle \displaystyle\int_{0}^{1} (2x+1)\, dx
c) \displaystyle \displaystyle \int_{0}^{2} (3-2x)\, dx d) \displaystyle \displaystyle\int_{-1}^{2}|x| \, dx

Exercise 2.1:2

Calculate the integrals

a) \displaystyle \displaystyle\int_{0}^{2} (x^2+3x^3)\, dx b) \displaystyle \displaystyle\int_{-1}^{2} (x-2)(x+1)\, dx
c) \displaystyle \displaystyle\int_{4}^{9} \left(\sqrt{x} - \displaystyle\frac{1}{\sqrt{x}}\right)\, dx d) \displaystyle \displaystyle\int_{1}^{4} \displaystyle\frac{\sqrt{x}}{x^2}\, dx

Exercise 2.1:3

Calculate the integrals

a) \displaystyle \displaystyle\int \sin x\, dx b) \displaystyle \displaystyle\int 2\sin x \cos x\, dx
c) \displaystyle \displaystyle\int e^{2x}(e^x+1)\, dx d) \displaystyle \displaystyle\int \displaystyle\frac{x^2+1}{x}\, dx

Exercise 2.1:4

a) Calculate the area between the curve \displaystyle y=\sin x and the \displaystyle x-axis when \displaystyle 0\le x \le \frac{5\pi}{4}.
b) Calculate the area under the curve \displaystyle y=-x^2+2x+2 and above the \displaystyle x-axis.
c) Calculate the area of the finite region between the curves \displaystyle y=\frac{1}{4}x^2+2 and \displaystyle y=8-\frac{1}{8}x^2 (Swedish A-level 1965).
d) Calculate the area of the finite region enclosed by the curves \displaystyle y=x+2, y=1 and \displaystyle y=\frac{1}{x}.
e) Calculate the area of the region given by the inequality, \displaystyle x^2\le y\le x+2.

Exercise 2.1:5

Calculate the integral

a) \displaystyle \displaystyle \int \displaystyle\frac{dx}{\sqrt{x+9}-\sqrt{x}}\quad (Hint: multiply the top and bottom by the conjugate of the denominator)
b) \displaystyle \displaystyle \int \sin^2 x\ dx\quad (Hint: rewrite the integrand using a trigonometric formula)