Solution 3.2:4d

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Lösning 3.2:4d moved to Solution 3.2:4d: Robot: moved page)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
For magnitudes of quotients, we have the arithmetical rule
-
<center> [[Image:3_2_4d.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\left| \frac{z}{w} \right|=\frac{\left| z \right|}{\left| w \right|}</math>
 +
 
 +
 
 +
We can therefore take the magnitude of the numerator and denominator separately and then divide the magnitudes by each other:
 +
 
 +
 
 +
<math>\begin{align}
 +
& \left| \frac{3-4i}{3+2i} \right|=\frac{\left| 3-4i \right|}{\left| 3+2i \right|}=\frac{\sqrt{3^{2}+\left( -4 \right)^{2}}}{\sqrt{3^{2}+2^{2}}}=\frac{\sqrt{9+16}}{\sqrt{9+4}} \\
 +
& =\frac{\sqrt{25}}{\sqrt{13}}=\frac{5}{\sqrt{13}} \\
 +
\end{align}</math>

Revision as of 15:39, 22 October 2008

For magnitudes of quotients, we have the arithmetical rule


\displaystyle \left| \frac{z}{w} \right|=\frac{\left| z \right|}{\left| w \right|}


We can therefore take the magnitude of the numerator and denominator separately and then divide the magnitudes by each other:


\displaystyle \begin{align} & \left| \frac{3-4i}{3+2i} \right|=\frac{\left| 3-4i \right|}{\left| 3+2i \right|}=\frac{\sqrt{3^{2}+\left( -4 \right)^{2}}}{\sqrt{3^{2}+2^{2}}}=\frac{\sqrt{9+16}}{\sqrt{9+4}} \\ & =\frac{\sqrt{25}}{\sqrt{13}}=\frac{5}{\sqrt{13}} \\ \end{align}