Solution 2.1:2d

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Robot: Automated text replacement (-[[Bild: +[[Image:))
Current revision (13:09, 21 October 2008) (edit) (undo)
m
 
(2 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
If we rewrite <math>\sqrt{x}</math> as <math>x^{1/2}</math>, the integrand can then be simplified using the power laws,
-
<center> [[Image:2_1_2d.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\int\limits_1^4 \frac{\sqrt{x}}{x^2}\,dx = \int\limits_1^4 \frac{x^{1/2}}{x^2}\,dx = \int\limits_1^4 x^{1/2-2}\,dx = \int\limits_1^4 x^{-3/2}\,dx\,\textrm{.}</math>}}
 +
 
 +
We can now use the fact that a primitive function for <math>x^{n}</math> is <math>x^{n+1}/(n+1)</math> and calculate the integral's value,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\int\limits_1^4 x^{-3/2}\,dx
 +
&= \Bigl[\ \frac{x^{-3/2+1}}{-3/2+1}\ \Bigr]_1^4\\[5pt]
 +
&= \Bigl[\ \frac{x^{-1/2}}{-1/2}\ \Bigr]_1^4\\[5pt]
 +
&= \Bigl[\ -2\frac{1}{x^{1/2}}\ \Bigr]_1^4\\[5pt]
 +
&= \Bigl[\ -\frac{2}{\sqrt{x}}\ \Bigr]_1^4\\[5pt]
 +
&= -\frac{2}{\sqrt{4}} - \Bigl(-\frac{2}{\sqrt{1}}\Bigr)\\[5pt]
 +
&= -\frac{2}{2}+2\\[5pt]
 +
&= 1\,\textrm{.}
 +
\end{align}</math>}}

Current revision

If we rewrite \displaystyle \sqrt{x} as \displaystyle x^{1/2}, the integrand can then be simplified using the power laws,

\displaystyle \int\limits_1^4 \frac{\sqrt{x}}{x^2}\,dx = \int\limits_1^4 \frac{x^{1/2}}{x^2}\,dx = \int\limits_1^4 x^{1/2-2}\,dx = \int\limits_1^4 x^{-3/2}\,dx\,\textrm{.}

We can now use the fact that a primitive function for \displaystyle x^{n} is \displaystyle x^{n+1}/(n+1) and calculate the integral's value,

\displaystyle \begin{align}

\int\limits_1^4 x^{-3/2}\,dx &= \Bigl[\ \frac{x^{-3/2+1}}{-3/2+1}\ \Bigr]_1^4\\[5pt] &= \Bigl[\ \frac{x^{-1/2}}{-1/2}\ \Bigr]_1^4\\[5pt] &= \Bigl[\ -2\frac{1}{x^{1/2}}\ \Bigr]_1^4\\[5pt] &= \Bigl[\ -\frac{2}{\sqrt{x}}\ \Bigr]_1^4\\[5pt] &= -\frac{2}{\sqrt{4}} - \Bigl(-\frac{2}{\sqrt{1}}\Bigr)\\[5pt] &= -\frac{2}{2}+2\\[5pt] &= 1\,\textrm{.} \end{align}