Solution 1.2:3f

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:1_2_3f.gif </center> {{NAVCONTENT_STOP}})
Current revision (13:24, 15 October 2008) (edit) (undo)
m
 
(4 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
We have no differentiation rule for a function raised to another function, but instead we use the formula
-
<center> [[Bild:1_2_3f.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>a^b = e^{\ln a^b} = e^{b\ln a}\,,</math>}}
 +
 
 +
which, in our case, gives
 +
 
 +
{{Displayed math||<math>x^{\tan x} = e^{\tan x\cdot\ln x}\,\textrm{.}</math>|(*)}}
 +
 
 +
Now, we obtain the derivative by first using the chain rule
 +
 
 +
{{Displayed math||<math>\frac{d}{dx}\,e^{\bbox[#FFEEAA;,1.5pt]{\tan x\cdot\ln x}} = {}\rlap{e^{\bbox[#FFEEAA;,1.5pt]{\tan x\cdot\ln x}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\tan x\cdot\ln x}\bigr)'}\phantom{e^{\tan x\cdot \ln x}\bigl((\tan x)'\cdot\ln x + \tan x\cdot (\ln x)'\bigr)}</math>}}
 +
 
 +
and then the product rule
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\phantom{\frac{d}{dx}\,e^{\bbox[#FFEEAA;,1.5pt]{\tan x\cdot\ln x}}}{}
 +
&= e^{\tan x\cdot \ln x}\bigl((\tan x)'\cdot\ln x + \tan x\cdot (\ln x)'\bigr)\\[5pt]
 +
&= e^{\tan x\cdot\ln x}\Bigl(\frac{1}{\cos^2\!x}\cdot\ln x + \tan x\cdot\frac{1}{x} \Bigr)\\[5pt]
 +
&= e^{\tan x\cdot\ln x}\Bigl(\frac{\ln x}{\cos^2\!x} + \frac{\tan x}{x}\Bigr)\\[5pt]
 +
&= x^{\tan x}\Bigl(\frac{\ln x}{\cos^2\!x} + \frac{\tan x}{x}\Bigr)\,,
 +
\end{align}</math>}}
 +
 
 +
where we have used (*) in reverse.

Current revision

We have no differentiation rule for a function raised to another function, but instead we use the formula

\displaystyle a^b = e^{\ln a^b} = e^{b\ln a}\,,

which, in our case, gives

\displaystyle x^{\tan x} = e^{\tan x\cdot\ln x}\,\textrm{.} (*)

Now, we obtain the derivative by first using the chain rule

\displaystyle \frac{d}{dx}\,e^{\bbox[#FFEEAA;,1.5pt]{\tan x\cdot\ln x}} = {}\rlap{e^{\bbox[#FFEEAA;,1.5pt]{\tan x\cdot\ln x}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\tan x\cdot\ln x}\bigr)'}\phantom{e^{\tan x\cdot \ln x}\bigl((\tan x)'\cdot\ln x + \tan x\cdot (\ln x)'\bigr)}

and then the product rule

\displaystyle \begin{align}

\phantom{\frac{d}{dx}\,e^{\bbox[#FFEEAA;,1.5pt]{\tan x\cdot\ln x}}}{} &= e^{\tan x\cdot \ln x}\bigl((\tan x)'\cdot\ln x + \tan x\cdot (\ln x)'\bigr)\\[5pt] &= e^{\tan x\cdot\ln x}\Bigl(\frac{1}{\cos^2\!x}\cdot\ln x + \tan x\cdot\frac{1}{x} \Bigr)\\[5pt] &= e^{\tan x\cdot\ln x}\Bigl(\frac{\ln x}{\cos^2\!x} + \frac{\tan x}{x}\Bigr)\\[5pt] &= x^{\tan x}\Bigl(\frac{\ln x}{\cos^2\!x} + \frac{\tan x}{x}\Bigr)\,, \end{align}

where we have used (*) in reverse.