Solution 1.2:3e

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Robot: Automated text replacement (-[[Bild: +[[Image:))
Current revision (13:12, 15 October 2008) (edit) (undo)
m
 
(2 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
At first sight, the expression looks like “''e'' raised to something” and therefore we differentiate using the chain rule,
-
<center> [[Image:1_2_3e.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\frac{d}{dx}\,e^{\bbox[#FFEEAA;,1.5pt]{\sin x^2}} =
 +
e^{\bbox[#FFEEAA;,1.5pt]{\sin x^2}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sin x^2}\bigr)'\,\textrm{.}</math>}}
 +
 
 +
Then, we differentiate “sine of something”,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
e^{\sin x^2}\cdot \bigl( \sin \bbox[#FFEEAA;,1.5pt]{x^2} \bigr)'
 +
&= e^{\sin x^2}\cdot \cos\bbox[#FFEEAA;,1.5pt]{x^2} \cdot \bigl( \bbox[#FFEEAA;,1.5pt]{x^2}\bigr)'\\[5pt]
 +
&= e^{\sin x^2}\cdot \cos x^2\cdot 2x\,\textrm{.}
 +
\end{align}</math>}}

Current revision

At first sight, the expression looks like “e raised to something” and therefore we differentiate using the chain rule,

\displaystyle \frac{d}{dx}\,e^{\bbox[#FFEEAA;,1.5pt]{\sin x^2}} =

e^{\bbox[#FFEEAA;,1.5pt]{\sin x^2}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sin x^2}\bigr)'\,\textrm{.}

Then, we differentiate “sine of something”,

\displaystyle \begin{align}

e^{\sin x^2}\cdot \bigl( \sin \bbox[#FFEEAA;,1.5pt]{x^2} \bigr)' &= e^{\sin x^2}\cdot \cos\bbox[#FFEEAA;,1.5pt]{x^2} \cdot \bigl( \bbox[#FFEEAA;,1.5pt]{x^2}\bigr)'\\[5pt] &= e^{\sin x^2}\cdot \cos x^2\cdot 2x\,\textrm{.} \end{align}