Solution 1.2:1f

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:1_2_1f-1(2).gif </center> {{NAVCONTENT_STOP}} {{NAVCONTENT_START}} <center> Bild:1_2_1f-2(2).gif </center> {{NAVCONTENT_STOP}})
Current revision (14:22, 14 October 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
In this case, we have a slightly more complicated expression, but if we focus on the expression's outer form, we have essentially "something divided by <math>\sin x</math>". As a first step, we therefore use the quotient rule,
-
<center> [[Bild:1_2_1f-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\Bigl(\frac{x\ln x}{\sin x}\Bigr)' = \frac{(x\ln x)'\cdot \sin x - x\ln x\cdot (\sin x)'}{(\sin x)^2}\,\textrm{.}</math>}}
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Bild:1_2_1f-2(2).gif]] </center>
+
We can, in turn, differentiate the expression <math>x\ln x</math> by using the product rule,
-
{{NAVCONTENT_STOP}}
+
 
 +
{{Displayed math||<math>\begin{align}
 +
(x\ln x)'
 +
&= (x)'\ln x + x\,(\ln x)'\\[5pt]
 +
&= 1\cdot\ln x + x\cdot\frac{1}{x}\\[5pt]
 +
&= \ln x+1\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
All in all, we thus obtain
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\Bigl(\frac{x\ln x}{\sin x}\Bigr)'
 +
&= \frac{(\ln x+1)\cdot\sin x - x\ln x\cdot \cos x}{(\sin x)^2}\\[5pt]
 +
&= \frac{\ln x+1}{\sin x}-\frac{x\ln x\cos x}{\sin^2\!x}\,\textrm{.}
 +
\end{align}</math>}}

Current revision

In this case, we have a slightly more complicated expression, but if we focus on the expression's outer form, we have essentially "something divided by \displaystyle \sin x". As a first step, we therefore use the quotient rule,

\displaystyle \Bigl(\frac{x\ln x}{\sin x}\Bigr)' = \frac{(x\ln x)'\cdot \sin x - x\ln x\cdot (\sin x)'}{(\sin x)^2}\,\textrm{.}

We can, in turn, differentiate the expression \displaystyle x\ln x by using the product rule,

\displaystyle \begin{align}

(x\ln x)' &= (x)'\ln x + x\,(\ln x)'\\[5pt] &= 1\cdot\ln x + x\cdot\frac{1}{x}\\[5pt] &= \ln x+1\,\textrm{.} \end{align}

All in all, we thus obtain

\displaystyle \begin{align}

\Bigl(\frac{x\ln x}{\sin x}\Bigr)' &= \frac{(\ln x+1)\cdot\sin x - x\ln x\cdot \cos x}{(\sin x)^2}\\[5pt] &= \frac{\ln x+1}{\sin x}-\frac{x\ln x\cos x}{\sin^2\!x}\,\textrm{.} \end{align}