Solution 1.2:1e
From Förberedande kurs i matematik 2
(Difference between revisions)
m |
|||
(One intermediate revision not shown.) | |||
Line 1: | Line 1: | ||
The quotient rule gives | The quotient rule gives | ||
- | + | {{Displayed math||<math>\begin{align} | |
- | <math>\begin{align} | + | \Bigl(\frac{x}{\ln x}\Bigr)' |
- | + | &= \frac{(x)'\cdot \ln x - x\cdot (\ln x)'}{(\ln x)^2}\\[5pt] | |
- | + | &= \frac{1\cdot\ln x - x\cdot\dfrac{1}{x}}{(\ln x)^2}\\[5pt] | |
- | & =\frac{1\ | + | &= \frac{\ln x-1}{(\ln x)^2}\\[5pt] |
- | \end{align}</math> | + | &= \frac{1}{\ln x} - \frac{1}{(\ln x)^2}\,\textrm{.} |
+ | \end{align}</math>}} |
Current revision
The quotient rule gives
\displaystyle \begin{align}
\Bigl(\frac{x}{\ln x}\Bigr)' &= \frac{(x)'\cdot \ln x - x\cdot (\ln x)'}{(\ln x)^2}\\[5pt] &= \frac{1\cdot\ln x - x\cdot\dfrac{1}{x}}{(\ln x)^2}\\[5pt] &= \frac{\ln x-1}{(\ln x)^2}\\[5pt] &= \frac{1}{\ln x} - \frac{1}{(\ln x)^2}\,\textrm{.} \end{align} |