Solution 1.2:1a

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
Current revision (13:40, 14 October 2008) (edit) (undo)
m
 
(One intermediate revision not shown.)
Line 1: Line 1:
-
Because the expression is a product of two factors, we use the product rule:
+
Because the expression is a product of two factors, we use the product rule,
 +
{{Displayed math||<math>\begin{align}
 +
(\sin x\cdot\cos x)^{\prime }
 +
&= (\cos x)^{\prime }\cdot\sin x + \cos x\cdot (\sin x)^{\prime }\\[5pt]
 +
&= -\sin x\cdot\sin x + \cos x\cdot\cos x\\[5pt]
 +
&= -\sin^2\!x + \cos^2\!x\,\textrm{.}
 +
\end{align}</math>}}
-
<math>\begin{align}
+
Using the formula for double angles, the answer can be simplified to <math>\cos 2x\,</math>.
-
& \left( \sin x\centerdot \cos x \right)^{\prime }=\left( \cos x \right)^{\prime }\centerdot \sin x+\cos x\centerdot \left( \sin x \right)^{\prime } \\
+
-
& \\
+
-
& =-\sin x\centerdot \sin x+\cos x\centerdot \cos x=\sin ^{2}x+\cos ^{2}x \\
+
-
\end{align}</math>
+
-
 
+
-
 
+
-
 
+
-
 
+
-
Using the formula for double angles, the answer can be simplified to
+
-
<math>\cos 2x</math>
+
-
.
+

Current revision

Because the expression is a product of two factors, we use the product rule,

\displaystyle \begin{align}

(\sin x\cdot\cos x)^{\prime } &= (\cos x)^{\prime }\cdot\sin x + \cos x\cdot (\sin x)^{\prime }\\[5pt] &= -\sin x\cdot\sin x + \cos x\cdot\cos x\\[5pt] &= -\sin^2\!x + \cos^2\!x\,\textrm{.} \end{align}

Using the formula for double angles, the answer can be simplified to \displaystyle \cos 2x\,.