Solution 1.2:1a

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Robot: Automated text replacement (-[[Bild: +[[Image:))
Current revision (13:40, 14 October 2008) (edit) (undo)
m
 
(2 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
Because the expression is a product of two factors, we use the product rule,
-
<center> [[Image:1_2_1a.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\begin{align}
 +
(\sin x\cdot\cos x)^{\prime }
 +
&= (\cos x)^{\prime }\cdot\sin x + \cos x\cdot (\sin x)^{\prime }\\[5pt]
 +
&= -\sin x\cdot\sin x + \cos x\cdot\cos x\\[5pt]
 +
&= -\sin^2\!x + \cos^2\!x\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
Using the formula for double angles, the answer can be simplified to <math>\cos 2x\,</math>.

Current revision

Because the expression is a product of two factors, we use the product rule,

\displaystyle \begin{align}

(\sin x\cdot\cos x)^{\prime } &= (\cos x)^{\prime }\cdot\sin x + \cos x\cdot (\sin x)^{\prime }\\[5pt] &= -\sin x\cdot\sin x + \cos x\cdot\cos x\\[5pt] &= -\sin^2\!x + \cos^2\!x\,\textrm{.} \end{align}

Using the formula for double angles, the answer can be simplified to \displaystyle \cos 2x\,.