Solution 1.1:2a

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:1_1_2a.gif </center> {{NAVCONTENT_STOP}})
Current revision (11:45, 14 October 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
By using the rule for differentiation
-
<center> [[Bild:1_1_2a.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\frac{d}{dx}\,x^{n}=nx^{n-1}</math>}}
 +
 
 +
and the fact that the expression can be differentiated term by term and that constant factors can be taken outside the differentiation, we obtain
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(x^2-3x+1\bigr)\\[5pt]
 +
&= \frac{d}{dx}\,x^2 - 3\frac{d}{dx}\,x^1 + \frac{d}{dx}\,1\\[5pt]
 +
&= 2x^{2-1} - 3\cdot 1x^{1-1} + 0\\[5pt]
 +
&= 2x-3\,\textrm{.}
 +
\end{align}</math>}}

Current revision

By using the rule for differentiation

\displaystyle \frac{d}{dx}\,x^{n}=nx^{n-1}

and the fact that the expression can be differentiated term by term and that constant factors can be taken outside the differentiation, we obtain

\displaystyle \begin{align}

f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(x^2-3x+1\bigr)\\[5pt] &= \frac{d}{dx}\,x^2 - 3\frac{d}{dx}\,x^1 + \frac{d}{dx}\,1\\[5pt] &= 2x^{2-1} - 3\cdot 1x^{1-1} + 0\\[5pt] &= 2x-3\,\textrm{.} \end{align}