3.3 Powers and roots

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m
Current revision (14:16, 17 September 2008) (edit) (undo)
m (Robot: Automated text replacement (-{{:3.3 - Figur - Komplexa talen z₁, z₂, z₃ och z₄}} +{{:3.3 - Figure - The complex numbers z₁, z₂, z₃ and z₄}}))
 
(10 intermediate revisions not shown.)
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #797979" width="5px" |  
| style="border-bottom:1px solid #797979" width="5px" |  
-
{{Mall:Vald flik|[[3.3 Potenser och rötter|Teori]]}}
+
{{Selected tab|[[3.3 Powers and roots|Theory]]}}
-
{{Mall:Ej vald flik|[[3.3 Övningar|Övningar]]}}
+
{{Not selected tab|[[3.3 Exercises|Exercises]]}}
| style="border-bottom:1px solid #797979" width="100%"|  
| style="border-bottom:1px solid #797979" width="100%"|  
|}
|}
{{Info|
{{Info|
-
'''Innehåll:'''
+
'''Contents:'''
-
* De Moivres formel
+
* De Moivre's formula
-
* Binomiska ekvationer
+
* Binomial equations
-
* Exponentialform
+
* Exponential function
-
* Eulers formel
+
* Euler's formula
-
* Kvadratkomplettering
+
* Completing the square
-
* Andragradsekvationer
+
* Quadratic equations
}}
}}
{{Info|
{{Info|
-
'''Lärandemål:'''
+
'''Learning outcomes:'''
-
Efter detta avsnitt ska du ha lärt dig att:
+
After this section, you will have learned how to:
-
* Beräkna potenser av komplexa tal med de Moivres formel.
+
* Calculate the powers of complex numbers with de Moivre's formula.
-
* Beräkna rötter av vissa komplexa tal genom omskrivning till polär form.
+
* Calculate the roots of certain complex numbers by rewriting to polar form.
-
* Lösa binomiska ekvationer.
+
*Solve binomial equations.
-
* Kvadratkomplettera komplexa andragradsuttryck.
+
* Complete the square for complex quadratic expressions.
-
* Lösa komplexa andragradsekvationer.
+
* Solve complex quadratic equations.
}}
}}
-
== De Moivres formel ==
+
== De Moivre's formula==
-
Räknereglerna <math>\ \arg (zw) = \arg z + \arg w\ </math> och <math>\ |\,zw\,| = |\,z\,|\cdot|\,w\,|\ </math> betyder att
+
The computational rules <math>\ \arg (zw) = \arg z + \arg w\ </math> and <math>\ |\,zw\,| = |\,z\,|\cdot|\,w\,|\ </math> mean that
-
{{Fristående formel||<math>\biggl\{\begin{align*}&\arg (z\cdot z) = \arg z + \arg z \\ &|\,z\cdot z\,| = |\,z\,|\cdot|\,z\,|\end{align*}\qquad\biggl\{\begin{align*}&\arg z^3 = 3 \arg z \cr &|\,z^3\,| = |\,z\,|^3\end{align*}\qquad\text{osv.}</math>}}
+
{{Displayed math||<math>\biggl\{\begin{align*}&\arg (z\cdot z) = \arg z + \arg z \\ &|\,z\cdot z\,| = |\,z\,|\cdot|\,z\,|\end{align*}\qquad\biggl\{\begin{align*}&\arg z^3 = 3 \arg z \cr &|\,z^3\,| = |\,z\,|^3\end{align*}\qquad\text{etc.}</math>}}
-
För ett godtyckligt tal <math>z=r\,(\cos \alpha +i\,\sin \alpha)</math> har vi därför följande samband
+
For an arbitrary number <math>z=r\,(\cos \alpha +i\,\sin \alpha)</math>, we therefore have the following relationship
-
{{Fristående formel||<math>z^n = \bigl(r\,(\cos \alpha +i\sin \alpha)\bigr)^n = r^n\,(\cos n\alpha +i\,\sin n\alpha)\,\mbox{.}</math>}}
+
{{Displayed math||<math>z^n = \bigl(r\,(\cos \alpha +i\sin \alpha)\bigr)^n = r^n\,(\cos n\alpha +i\,\sin n\alpha)\,\mbox{.}</math>}}
-
Om <math>|\,z\,|=1</math>, (dvs. <math>z</math> ligger på enhetscirkeln) gäller speciellt
+
If <math>|\,z\,|=1</math>, (i.e. <math>z</math> lies on the unit circle) then one has the special relationship
<div class="regel">
<div class="regel">
-
{{Fristående formel||<math>(\cos \alpha +i\,\sin \alpha)^n = \cos n\alpha +i\,\sin n\alpha\,\mbox{,}</math>}}
+
{{Displayed math||<math>(\cos \alpha +i\,\sin \alpha)^n = \cos n\alpha +i\,\sin n\alpha\,\mbox{,}</math>}}
</div>
</div>
-
vilket brukar kallas ''de Moivres formel''. Denna relation är mycket användbar när det gäller att härleda trigonometriska identiteter och beräkna rötter och potenser av komplexa tal.
+
which is usually referred to as ''de Moivres formula''. This relationship is very useful when it comes to deriving trigonometric identities and calculating the roots and powers of complex numbers.
<div class="exempel">
<div class="exempel">
-
'''Exempel 1'''
+
''' Example 1'''
-
Om <math>z = \frac{1+i}{\sqrt2}</math>, beräkna <math>z^3</math> och <math>z^{100}</math>.
+
If <math>z = \frac{1+i}{\sqrt2}</math>, determine <math>z^3</math> and <math>z^{100}</math>.
-
Skriver vi <math>z</math> i polär form <math>\ \ z= \frac{1}{\sqrt2} + \frac{i}{\sqrt2} = 1\cdot \Bigl(\cos \frac{\pi}{4} + i\sin \frac{\pi}{4}\Bigr)\ \ </math> så ger de Moivres formel oss att
+
We write <math>z</math> in polar form <math>\ \ z= \frac{1}{\sqrt2} + \frac{i}{\sqrt2} = 1\cdot \Bigl(\cos \frac{\pi}{4} + i\sin \frac{\pi}{4}\Bigr)\ \ </math> and Moivre's formula gives
-
{{Fristående formel||<math>\begin{align*}z^3 &= \Bigl( \cos\frac{\pi}{4} + i\,\sin\frac{\pi}{4}\,\Bigr)^3 = \cos\frac{3\pi}{4} + i\,\sin\frac{3\pi}{4} = -\frac{1}{\sqrt2} + \frac{1}{\sqrt2}\,i = \frac{-1+i}{\sqrt2}\,\mbox{,}\\[6pt] z^{100} &= \Bigl( \cos\frac{\pi}{4} + i\,\sin\frac{\pi}{4}\,\Bigr)^{100} = \cos\frac{100\pi}{4} + i\,\sin\frac{100\pi}{4}\\[4pt] &= \cos 25\pi + i\,\sin 25\pi = \cos \pi + i\,\sin \pi = -1\,\mbox{.}\end{align*}</math>}}
+
{{Displayed math||<math>\begin{align*}z^3 &= \Bigl( \cos\frac{\pi}{4} + i\,\sin\frac{\pi}{4}\,\Bigr)^3 = \cos\frac{3\pi}{4} + i\,\sin\frac{3\pi}{4} = -\frac{1}{\sqrt2} + \frac{1}{\sqrt2}\,i = \frac{-1+i}{\sqrt2}\,\mbox{,}\\[6pt] z^{100} &= \Bigl( \cos\frac{\pi}{4} + i\,\sin\frac{\pi}{4}\,\Bigr)^{100} = \cos\frac{100\pi}{4} + i\,\sin\frac{100\pi}{4}\\[4pt] &= \cos 25\pi + i\,\sin 25\pi = \cos \pi + i\,\sin \pi = -1\,\mbox{.}\end{align*}</math>}}
</div>
</div>
<div class="exempel">
<div class="exempel">
-
'''Exempel 2'''
+
''' Example 2'''
-
På traditionellt sätt kan man med kvadreringsregeln utveckla
+
In the usual way one does an expansion by means of the squaring rules
-
{{Fristående formel||<math>\begin{align*} (\cos v + i\,\sin v)^2 &= \cos^2\!v + i^2 \sin^2\!v + 2i \sin v \cos v\\ &= \cos^2\!v - \sin^2\!v + 2i \sin v \cos v\end{align*}</math>}}
+
{{Displayed math||<math>\begin{align*} (\cos v + i\,\sin v)^2 &= \cos^2\!v + i^2 \sin^2\!v + 2i \sin v \cos v\\ &= \cos^2\!v - \sin^2\!v + 2i \sin v \cos v\end{align*}</math>}}
-
och med de Moivres formel få att
+
and according to de Moivre's formula one gets
-
{{Fristående formel||<math>(\cos v + i \sin v)^2 = \cos 2v + i \sin 2v\,\mbox{.}</math>}}
+
{{Displayed math||<math>(\cos v + i \sin v)^2 = \cos 2v + i \sin 2v\,\mbox{.}</math>}}
-
Om man identifierar real- respektive imaginärdel i de båda uttrycken får man de kända trigonometriska formlerna
+
If one equates the real and imaginary parts of the two expressions one gets the well-known trigonometric formulas
-
{{Fristående formel||<math>\biggl\{\begin{align*}\cos 2v &= \cos^2\!v - \sin^2\!v\,\mbox{,}\\[2pt] \sin 2v&= 2 \sin v \cos v\,\mbox{.}\end{align*}</math>}}
+
 
 +
{{Displayed math||<math>\biggl\{\begin{align*}\cos 2v &= \cos^2\!v - \sin^2\!v\,\mbox{,}\\[2pt] \sin 2v&= 2 \sin v \cos v\,\mbox{.}\end{align*}</math>}}
</div>
</div>
<div class="exempel">
<div class="exempel">
-
'''Exempel 3'''
+
''' Example 3'''
-
Beräkna <math>\ \ \frac{(\sqrt3 + i)^{14}}{(1+i\sqrt3\,)^7(1+i)^{10}}\,</math>.
+
Simplify <math>\ \ \frac{(\sqrt3 + i)^{14}}{(1+i\sqrt3\,)^7(1+i)^{10}}\,</math>.
-
Vi skriver talen <math>\sqrt{3}+i</math>, <math>1+i\sqrt{3}</math> och <math>1+i</math> i polär form
+
We write the numbers <math>\sqrt{3}+i</math>, <math>1+i\sqrt{3}</math> and <math>1+i</math> in polar form
*<math>\quad\sqrt{3} + i = 2\Bigl(\cos\frac{\pi}{6} + i\,\sin\frac{\pi}{6}\,\Bigr)\vphantom{\biggl(}</math>,
*<math>\quad\sqrt{3} + i = 2\Bigl(\cos\frac{\pi}{6} + i\,\sin\frac{\pi}{6}\,\Bigr)\vphantom{\biggl(}</math>,
*<math>\quad 1+i\sqrt{3} = 2\Bigl(\cos\frac{\pi}{3} + i\,\sin\frac{\pi}{3}\,\Bigr)\vphantom{\biggl(}</math>,
*<math>\quad 1+i\sqrt{3} = 2\Bigl(\cos\frac{\pi}{3} + i\,\sin\frac{\pi}{3}\,\Bigr)\vphantom{\biggl(}</math>,
*<math>\quad 1+i = \sqrt2\,\Bigl(\cos\frac{\pi}{4} + i\,\sin\frac{\pi}{4}\,\Bigr)\vphantom{\biggl(}</math>.
*<math>\quad 1+i = \sqrt2\,\Bigl(\cos\frac{\pi}{4} + i\,\sin\frac{\pi}{4}\,\Bigr)\vphantom{\biggl(}</math>.
-
Då får vi med de Moivres formel att
+
Then we get with de Moivre's formula
-
{{Fristående formel||<math>\frac{(\sqrt3 + i)^{14}}{(1+i\sqrt3\,)^7(1+i)^{10}} = \frac{\displaystyle 2^{14}\Bigl(\cos\frac{14\pi}{6} + i\,\sin \frac{14\pi}{6}\,\Bigr)\vphantom{\biggl(}}{\displaystyle 2^7\Bigl(\cos \frac{7\pi}{3} + i\,\sin\frac{7\pi}{3}\,\Bigr) \cdot (\sqrt{2}\,)^{10}\Bigl(\cos\frac{10\pi}{4} + i\,\sin\frac{10\pi}{4}\,\Bigr)\vphantom{\biggl(}}</math>}}
+
{{Displayed math||<math>\frac{(\sqrt3 + i)^{14}}{(1+i\sqrt3\,)^7(1+i)^{10}} = \frac{\displaystyle 2^{14}\Bigl(\cos\frac{14\pi}{6} + i\,\sin \frac{14\pi}{6}\,\Bigr)\vphantom{\biggl(}}{\displaystyle 2^7\Bigl(\cos \frac{7\pi}{3} + i\,\sin\frac{7\pi}{3}\,\Bigr) \cdot (\sqrt{2}\,)^{10}\Bigl(\cos\frac{10\pi}{4} + i\,\sin\frac{10\pi}{4}\,\Bigr)\vphantom{\biggl(}}</math>}}
-
och detta uttryck kan förenklas genom att utföra multiplikationen och divisionen i polär form
+
and this expression can be simplified by performing multiplication and division in polar form
-
{{Fristående formel||<math>\begin{align*}\frac{\displaystyle 2^{14}\Bigl(\cos\frac{14\pi}{6} + i\,\sin\frac{14\pi}{6}\,\Bigr)\vphantom{\biggl(}} {\displaystyle 2^{12}\Bigl(\cos\frac{29\pi}{6} + i\,\sin\frac{29\pi}{6}\,\Bigr)\vphantom{\biggl(}} &= 2^2 \Bigl(\cos\Bigl( -\frac{15\pi}{6}\,\Bigr) + i\,\sin\Bigl( -\frac{15\pi}{6}\,\Bigr)\,\Bigr)\\[8pt] &= 4\Bigl(\cos \Bigl( -\frac{\pi}{2}\,\Bigr) + i\,\sin\Bigl( -\frac{\pi}{2}\,\Bigr)\,\Bigr) = -4i\,\mbox{.}\end{align*}</math>}}
+
{{Displayed math||<math>\begin{align*}\frac{\displaystyle 2^{14}\Bigl(\cos\frac{14\pi}{6} + i\,\sin\frac{14\pi}{6}\,\Bigr)\vphantom{\biggl(}} {\displaystyle 2^{12}\Bigl(\cos\frac{29\pi}{6} + i\,\sin\frac{29\pi}{6}\,\Bigr)\vphantom{\biggl(}} &= 2^2 \Bigl(\cos\Bigl( -\frac{15\pi}{6}\,\Bigr) + i\,\sin\Bigl( -\frac{15\pi}{6}\,\Bigr)\,\Bigr)\\[8pt] &= 4\Bigl(\cos \Bigl( -\frac{\pi}{2}\,\Bigr) + i\,\sin\Bigl( -\frac{\pi}{2}\,\Bigr)\,\Bigr) = -4i\,\mbox{.}\end{align*}</math>}}
</div>
</div>
-
== Binomiska ekvationer ==
+
== Binomial equations ==
-
Ett komplext tal <math>z</math> kallas en ''n'':te rot av det komplexa talet <math>w</math> om
+
A complex number <math>z</math> is called the ''n''th root of the complex number <math>w</math> if
<div class="regel">
<div class="regel">
-
{{Fristående formel||<math>z^n= w \mbox{.}</math>}}
+
{{Displayed math||<math>z^n= w \mbox{.}</math>}}
</div>
</div>
-
Ovanstående samband kan också ses som en ekvation där <math>z</math> är obekant, och en sådan ekvation kallas en ''binomisk ekvation''. Lösningarna ges av att skriva båda leden i polär form och jämföra belopp och argument.
+
The above relationship can also be seen as an equation in which <math>z</math> is unknown. This type of equation is called a ''binomial equation''. The solutions are obtained by rewriting both sides in polar form and comparing both the moduli and the arguments.
-
För ett givet tal <math>w=|\,w\,|\,(\cos \theta + i\,\sin \theta)</math> ansätter man det sökta talet <math>z=r\,(\cos \alpha + i\, \sin \alpha)</math> och den binomiska ekvationen blir
+
For a given number <math>w=|\,w\,|\,(\cos \theta + i\,\sin \theta)</math> one assumes that <math>z=r\,(\cos \alpha + i\, \sin \alpha)</math> and after insertion, the binomial equation becomes
 +
{{Displayed math||<math>r^{\,n}\,(\cos n\alpha + i \sin n\alpha) =|w|\,(\cos \theta + i \sin \theta)\,\mbox{,}</math>}}
-
{{Fristående formel||<math>r^{\,n}\,(\cos n\alpha + i \sin n\alpha) =|w|\,(\cos \theta + i \sin \theta)\,\mbox{,}</math>}}
+
where de Moivres formula has been used on the left-hand side. Equating moduli and arguments gives
-
där de Moivres formel använts i vänsterledet. För belopp och argument måste nu gälla
+
{{Displayed math||<math>\biggl\{\begin{align*} r^{\,n} &= |w|\,\mbox{,}\\ n\alpha &= \theta + k\cdot 2\pi\,\mbox{.}\end{align*}</math>}}
-
{{Fristående formel||<math>\biggl\{\begin{align*} r^{\,n} &= |w|\,\mbox{,}\\ n\alpha &= \theta + k\cdot 2\pi\,\mbox{.}\end{align*}</math>}}
+
Note that we add multiples of <math>2\pi</math> to include all possible values of the argument that have the same direction as <math>\theta</math>. One gets
-
Observera att vi lägger till multipler av <math>2\pi</math> för att få med alla värden på argumentet som anger samma riktning som <math>\theta</math>. Man får då att
+
{{Displayed math||<math>\biggl\{\begin{align*} r &={\textstyle\sqrt[\scriptstyle n]{|w|}},\\ \alpha &= (\theta + 2k\pi)/n\,, \quad k=0, \pm 1, \pm 2, \ldots\end{align*}</math>}}
-
{{Fristående formel||<math>\biggl\{\begin{align*} r &={\textstyle\sqrt[\scriptstyle n]{|w|}},\\ \alpha &= (\theta + 2k\pi)/n\,, \quad k=0, \pm 1, \pm 2, \ldots\end{align*}</math>}}
+
This gives ''one'' value of <math>r</math>, but infinitely many values of <math>\alpha</math>. Despite this, there are not infinitely many solutions. From <math>k = 0</math> to <math>k = n - 1</math> one gets different arguments for <math>z</math> and thus different positions for <math>z</math> in the complex plane. For the other values of <math>k</math> due to the periodicity of the sine and cosine, one returns to these positions and therefore no new solutions are obtained. This reasoning shows that the equation <math>z^n=w</math> has exactly <math>n</math> roots.
-
Detta ger ''ett'' värde på <math>r</math>, men oändligt många värden på <math>\alpha</math>. Trots detta blir det inte oändligt många lösningar. Från <math>k = 0</math> till <math>k = n - 1</math> får man olika argument för <math>z</math> och därmed olika lägen för <math>z</math> i det komplexa talplanet. För övriga värden på <math>k</math> kommer man pga. periodiciteten hos sinus och cosinus tillbaka till dessa lägen och får alltså inga nya lösningar. Detta resonemang visar att ekvationen <math>z^n=w</math> har exakt <math>n</math> rötter.
+
''Comment''. Note that the arguments of the roots differ from each other by <math>2\pi/n</math> so that the roots are evenly distributed on a circle with radius <math>\sqrt[\scriptstyle n]{|w|}</math> and form corners in a regular ''n-gon'' (an ''n'' sided polygon).
-
 
+
-
''Anm.'' Observera att rötternas olika argument ligger <math>2\pi/n</math> ifrån varandra, vilket gör att rötterna ligger jämnt fördelade på en cirkel med radien <math>\sqrt[\scriptstyle n]{|w|}</math> och bildar hörn i en regelbunden ''n''-hörning.
+
Line 131: Line 131:
-
Lös den binomiska ekvationen <math>\ z^4= 16\,i\,</math>.
+
Solve the binomial equation <math>\ z^4= 16\,i\,</math>.
-
Skriv <math>z</math> och <math>16\,i</math> i polär form
+
Write <math>z</math> and <math>16\,i</math> in polar form
*<math>\quad z=r\,(\cos \alpha + i\,\sin \alpha)\,</math>,
*<math>\quad z=r\,(\cos \alpha + i\,\sin \alpha)\,</math>,
*<math>\quad 16\,i= 16\Bigl(\cos\frac{\pi}{2} + i\,\sin\frac{\pi}{2}\,\Bigr)\vphantom{\biggl(}</math>.
*<math>\quad 16\,i= 16\Bigl(\cos\frac{\pi}{2} + i\,\sin\frac{\pi}{2}\,\Bigr)\vphantom{\biggl(}</math>.
-
Då ger ekvationen <math>\ z^4=16\,i\ </math> att
+
This turns the equation <math>\ z^4=16\,i\ </math> into
-
{{Fristående formel||<math>r^4\,(\cos 4\alpha + i\,\sin 4\alpha) = 16\Bigl(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\,\Bigr)\,\mbox{.}</math>}}
+
{{Displayed math||<math>r^4\,(\cos 4\alpha + i\,\sin 4\alpha) = 16\Bigl(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\,\Bigr)\,\mbox{.}</math>}}
-
När vi identifierar belopp och argument i båda led fås att
+
Matching the moduli and arguments on both sides gives
-
{{Fristående formel||<math>\biggl\{\begin{align*} r^4 &= 16,\\ 4\alpha &= \pi/2 + k\cdot 2\pi,\end{align*}\qquad\text{dvs.}\qquad\biggl\{\begin{align*} r &= \sqrt[\scriptstyle 4]{16}= 2, \\ \alpha &= \pi/8 + k\pi/2\,,\quad k=0,1,2,3.\end{align*}</math>}}
+
{{Displayed math||<math>\biggl\{\begin{align*} r^4 &= 16,\\ 4\alpha &= \pi/2 + k\cdot 2\pi,\end{align*}\qquad\text{i.e.}\qquad\biggl\{\begin{align*} r &= \sqrt[\scriptstyle 4]{16}= 2, \\ \alpha &= \pi/8 + k\pi/2\,,\quad k=0,1,2,3.\end{align*}</math>}}
{| width="100%"
{| width="100%"
| width="95%"|
| width="95%"|
-
Lösningarna till ekvationen är alltså
+
The solutions to the equation are thus
-
{{Fristående formel||<math>\left\{\begin{align*}\displaystyle z_1&= 2\Bigl(\cos \frac{\pi}{8} + i\,\sin\frac{\pi}{8}\,\Bigr),\\[4pt]
+
{{Displayed math||<math>\left\{\begin{align*}\displaystyle z_1&= 2\Bigl(\cos \frac{\pi}{8} + i\,\sin\frac{\pi}{8}\,\Bigr),\\[4pt]
\displaystyle z_2 &= 2\Bigl(\cos\frac{5\pi}{8} + i\,\sin\frac{5\pi}{8}\,\Bigr),\vphantom{\biggl(}\\[4pt]
\displaystyle z_2 &= 2\Bigl(\cos\frac{5\pi}{8} + i\,\sin\frac{5\pi}{8}\,\Bigr),\vphantom{\biggl(}\\[4pt]
\displaystyle z_3 &= 2\Bigl(\cos\frac{9\pi}{8} + i\,\sin\frac{9\pi}{8}\,\Bigr),\vphantom{\biggl(}\\[4pt]
\displaystyle z_3 &= 2\Bigl(\cos\frac{9\pi}{8} + i\,\sin\frac{9\pi}{8}\,\Bigr),\vphantom{\biggl(}\\[4pt]
\displaystyle z_4 &= 2\Bigl(\cos\frac{13\pi}{8} + i\,\sin\frac{13\pi}{8}\,\Bigr).\end{align*}\right.</math>}}
\displaystyle z_4 &= 2\Bigl(\cos\frac{13\pi}{8} + i\,\sin\frac{13\pi}{8}\,\Bigr).\end{align*}\right.</math>}}
| width="5%" |
| width="5%" |
-
||{{:3.3 - Figur - Komplexa talen z₁, z₂, z₃ och z₄}}
+
||{{:3.3 - Figure - The complex numbers z₁, z₂, z₃ and z₄}}
|}
|}
- 
</div>
</div>
-
== Exponentialform av komplexa tal ==
+
==Exponential form of complex numbers ==
-
Om vi behandlar <math>i</math> likvärdigt med ett reellt tal och betraktar ett komplext tal <math>z</math> som en funktion av <math>\alpha</math> (och <math>r</math> är en konstant),
+
If we manipulate <math>i</math> as if it were a real number and treat a complex number <math>z</math> as a function of just <math>\alpha</math> ( where <math>r</math> is a constant),
-
{{Fristående formel||<math>f(\alpha) = r\,(\cos \alpha + i\,\sin \alpha)</math>}}
+
{{Displayed math||<math>f(\alpha) = r\,(\cos \alpha + i\,\sin \alpha)</math>}}
-
så får vi efter derivering
+
we get after differentiation
-
{{Fristående formel||<math>\begin{align*} f^{\,\prime}(\alpha) &= -r\sin \alpha + r\,i\,\cos \alpha = r\,i^2 \sin \alpha + r\,i\,\cos \alpha = i\,r\,(\cos \alpha + i\,\sin \alpha) = i\,f(\alpha)\\ f^{\,\prime\prime} (\alpha) &= - r\,\cos \alpha - r\,i\,\sin \alpha = i^2\,r\,(\cos \alpha + i\,\sin \alpha) = i^2\, f(\alpha)\cr &\text{osv.}\end{align*}</math>}}
+
{{Displayed math||<math>\begin{align*} f^{\,\prime}(\alpha) &= -r\sin \alpha + r\,i\,\cos \alpha = r\,i^2 \sin \alpha + r\,i\,\cos \alpha = i\,r\,(\cos \alpha + i\,\sin \alpha) = i\,f(\alpha)\\ f^{\,\prime\prime} (\alpha) &= - r\,\cos \alpha - r\,i\,\sin \alpha = i^2\,r\,(\cos \alpha + i\,\sin \alpha) = i^2\, f(\alpha)\cr &\text{etc.}\end{align*}</math>}}
-
Den enda reella funktion med dessa egenskaper är <math>f(x)= e^{\,kx}</math>, vilket motiverar definitionen
+
The only real-valued functions which behave like this are <math>f(x)= e^{\,kx}</math>, which justifies the definition
-
{{Fristående formel||<math>e^{\,i\alpha} = \cos \alpha + i\,\sin \alpha\,\mbox{.}</math>}}
+
{{Displayed math||<math>e^{\,i\alpha} = \cos \alpha + i\,\sin \alpha\,\mbox{.}</math>}}
-
Denna definition visar sig vara en helt naturlig generalisering av exponentialfunktionen för reella tal. Om man sätter <math>z=a+ib</math> så får man
+
This definition turns out to be a completely natural generalisation of the exponential function for the real numbers. Putting <math>z=a+ib</math> one gets
-
{{Fristående formel||<math>e^{\,z} = e^{\,a+ib} = e^{\,a} \cdot e^{\,ib} = e^{\,a}(\cos b + i\,\sin b)\,\mbox{.}</math>}}
+
{{Displayed math||<math>e^{\,z} = e^{\,a+ib} = e^{\,a} \cdot e^{\,ib} = e^{\,a}(\cos b + i\,\sin b)\,\mbox{.}</math>}}
-
Definitionen av <math>e^{\,z}</math> kan uppfattas som ett bekvämt skrivsätt för den polära formen av ett komplext tal, eftersom <math>z=r\,(\cos \alpha + i\,\sin \alpha) = r\,e^{\,i\alpha}\,</math>.
+
The definition of <math>e^{\,z}</math> may be regarded as a convenient notation for the polar form of a complex number, as <math>z=r\,(\cos \alpha + i\,\sin \alpha) = r\,e^{\,i\alpha}\,</math>.
<div class="exempel">
<div class="exempel">
-
'''Exempel 5'''
+
''' Example 5'''
-
För ett reellt tal <math>z</math> överensstämmer definitionen med den reella exponentialfunktionen, eftersom <math>z=a+0\cdot i</math> ger att
+
For a real number <math>z</math> the definition is consistent with the case when the exponent is real, as <math>z=a+0\cdot i</math> which gives
-
{{Fristående formel||<math>e^{\,z} = e^{\,a+0\cdot i} = e^a (\cos 0 + i \sin 0) = e^a \cdot 1 = e^a\,\mbox{.}</math>}}
+
{{Displayed math||<math>e^{\,z} = e^{\,a+0\cdot i} = e^a (\cos 0 + i \sin 0) = e^a \cdot 1 = e^a\,\mbox{.}</math>}}
</div>
</div>
<div class="exempel">
<div class="exempel">
-
'''Exempel 6'''
+
''' Example 6'''
-
Ytterligare en indikation på det naturliga i ovanstående definition ges av sambandet
+
A further indication of why the above definition is so natural is given by the relationship
-
{{Fristående formel||<math>\bigl(e^{\,i\alpha}\bigr)^n = (\cos \alpha + i \sin \alpha)^n = \cos n\alpha + i \sin n \alpha = e^{\,in\alpha}\,\mbox{,}</math>}}
+
{{Displayed math||<math>\bigl(e^{\,i\alpha}\bigr)^n = (\cos \alpha + i \sin \alpha)^n = \cos n\alpha + i \sin n \alpha = e^{\,in\alpha}\,\mbox{,}</math>}}
-
vilket visar att de Moivres formel egentligen är identisk med en redan känd potenslag,
+
which demonstrates that de Moivre's formula is actually identical to the well-known law of exponents,
-
{{Fristående formel||<math>\left(a^x\right)^y = a^{x\,y}\,\mbox{.}</math>}}
+
{{Displayed math||<math>\left(a^x\right)^y = a^{x\,y}\,\mbox{.}</math>}}
</div>
</div>
<div class="exempel">
<div class="exempel">
-
'''Exempel 7'''
+
''' Example 7'''
-
Ur definitionen ovan kan man erhålla sambandet
+
From the above definition, one can obtain the relationship
-
{{Fristående formel||<math>e^{\pi\,i} = \cos \pi + i \sin \pi = -1</math>}}
+
{{Displayed math||<math>e^{\pi\,i} = \cos \pi + i \sin \pi = -1</math>}}
-
vilket knyter samman de tal som brukar räknas som de mest grundläggande inom matematiken: <math>e</math>, <math>\pi</math>, <math>i</math> och 1.
+
which connects together the, generally regarded, most basic numbers in mathematics: <math>e</math>, <math>\pi</math>, <math>i</math> and 1.
-
Detta samband betraktas av många som det vackraste inom matematiken och upptäcktes av Euler i början av 1700-talet.
+
This relationship is seen by many as the most beautiful in mathematics and was discovered by Euler in the early 1700's.
</div>
</div>
<div class="exempel">
<div class="exempel">
-
'''Exempel 8'''
+
''' Example 8'''
-
Lös ekvationen <math>\ (z+i)^3 = -8i</math>.
+
Solve the equation <math>\ (z+i)^3 = -8i</math>.
-
Sätt <math>w = z + i</math>. Vi får då den binomiska ekvationen <math>\ w^3=-8i\,</math>. Till att börja med skriver vi om <math>w</math> och <math>-8i</math> i polär form
+
Put <math>w = z + i</math>. We then get the binomial equation <math>\ w^3=-8i\,</math>. To begin with, we rewrite <math>w</math> and <math>-8i</math> in polar form
*<math>\quad w=r\,(\cos \alpha + i\,\sin \alpha) = r\,e^{i\alpha}\,\mbox{,}</math>
*<math>\quad w=r\,(\cos \alpha + i\,\sin \alpha) = r\,e^{i\alpha}\,\mbox{,}</math>
*<math>\quad -8i = 8\Bigl(\cos \frac{3\pi}{2} + i\,\sin\frac{3\pi}{2}\,\Bigr) = 8\,e^{3\pi i/2}\vphantom{\biggl(}\,\mbox{.}</math>
*<math>\quad -8i = 8\Bigl(\cos \frac{3\pi}{2} + i\,\sin\frac{3\pi}{2}\,\Bigr) = 8\,e^{3\pi i/2}\vphantom{\biggl(}\,\mbox{.}</math>
-
Ekvationen blir i polär form <math>\ r^3e^{3\alpha i}=8\,e^{3\pi i/2}\ </math> och identifierar vi belopp och argument i båda led har vi att
+
The equation in polar form is <math>\ r^3e^{3\alpha i}=8\,e^{3\pi i/2}\ </math> and matching the moduli and arguments on both sides gives,
-
{{Fristående formel||<math>\biggl\{\begin{align*} r^3 &= 8\,\mbox{,}\\ 3\alpha &= 3\pi/2+2k\pi\,\mbox{,}\end{align*}\qquad\Leftrightarrow\qquad\biggl\{\begin{align*} r&=\sqrt[\scriptstyle 3]{8}\,\mbox{,}\\ \alpha&= \pi/2+2k\pi/3\,,\quad k=0,1,2\,\mbox{.}\end{align*}</math>}}
+
{{Displayed math||<math>\biggl\{\begin{align*} r^3 &= 8\,\mbox{,}\\ 3\alpha &= 3\pi/2+2k\pi\,\mbox{,}\end{align*}\qquad\Leftrightarrow\qquad\biggl\{\begin{align*} r&=\sqrt[\scriptstyle 3]{8}\,\mbox{,}\\ \alpha&= \pi/2+2k\pi/3\,,\quad k=0,1,2\,\mbox{.}\end{align*}</math>}}
-
Rötterna till ekvationen blir därmed
+
The roots of the equation are thus
*<math>\quad w_1 = 2\,e^{\pi i/2} = 2\Bigl(\cos \frac{\pi}{2} + i\,\sin\frac{\pi}{2}\,\Bigr) = 2i\,\mbox{,}\quad\vphantom{\biggl(}</math>
*<math>\quad w_1 = 2\,e^{\pi i/2} = 2\Bigl(\cos \frac{\pi}{2} + i\,\sin\frac{\pi}{2}\,\Bigr) = 2i\,\mbox{,}\quad\vphantom{\biggl(}</math>
*<math>\quad w_2 = 2\,e^{7\pi i/6} = 2\Bigl(\cos\frac{7\pi}{6} + i\,\sin\frac{7\pi}{6}\,\Bigr) = -\sqrt{3}-i\,\mbox{,}\quad\vphantom{\Biggl(}</math>
*<math>\quad w_2 = 2\,e^{7\pi i/6} = 2\Bigl(\cos\frac{7\pi}{6} + i\,\sin\frac{7\pi}{6}\,\Bigr) = -\sqrt{3}-i\,\mbox{,}\quad\vphantom{\Biggl(}</math>
*<math>\quad w_3 = 2\,e^{11\pi i/6} = 2\Bigl(\cos\frac{11\pi}{6} + i\,\sin\frac{11\pi}{6}\,\Bigr) = \sqrt{3}-i\,\mbox{,}\quad\vphantom{\biggl(}</math>
*<math>\quad w_3 = 2\,e^{11\pi i/6} = 2\Bigl(\cos\frac{11\pi}{6} + i\,\sin\frac{11\pi}{6}\,\Bigr) = \sqrt{3}-i\,\mbox{,}\quad\vphantom{\biggl(}</math>
-
dvs. <math>z_1 = 2i-i=i</math>, <math>z_2 = - \sqrt{3}-2i</math> och <math>z_3 = \sqrt{3}-2i</math>.
+
i.e. <math>z_1 = 2i-i=i</math>, <math>z_2 = - \sqrt{3}-2i</math> and <math>z_3 = \sqrt{3}-2i</math>.
</div>
</div>
<div class="exempel">
<div class="exempel">
-
'''Exempel 9'''
+
''' Example 9'''
-
Lös ekvationen <math>\ z^2 = \overline{z}\,</math>.
+
Solve <math>\ z^2 = \overline{z}\,</math>.
-
Om <math>z=a+ib</math> har <math>|\,z\,|=r</math> och <math>\arg z = \alpha</math> så gäller att <math>\overline{z}= a-ib</math> har <math>|\,\overline{z}\,|=r</math> och <math>\arg \overline{z} = - \alpha</math>. Därför gäller att <math>z=r\,e^{i\alpha}</math> och <math>\overline{z} = r\,e^{-i\alpha}</math>. Ekvationen kan därmed skrivas
+
If for <math>z=a+ib</math> one has <math>|\,z\,|=r</math> and <math>\arg z = \alpha</math> then for <math>\overline{z}= a-ib</math> one gets <math>|\,\overline{z}\,|=r</math> and <math>\arg \overline{z} = - \alpha</math>.This means that <math>z=r\,e^{i\alpha}</math> and <math>\overline{z} = r\,e^{-i\alpha}</math>. The equation can be written
-
{{Fristående formel||<math>(r\,e^{i\alpha})^2 = r\,e^{-i\alpha}\qquad\text{eller}\qquad r^2 e^{2i\alpha}= r\,e^{-i\alpha}\,\mbox{,}</math>}}
+
{{Displayed math||<math>(r\,e^{i\alpha})^2 = r\,e^{-i\alpha}\qquad\text{or}\qquad r^2 e^{2i\alpha}= r\,e^{-i\alpha}\,\mbox{,}</math>}}
-
vilket direkt ger att <math>r=0</math> är en lösning, dvs. <math>z=0</math>. Om vi antar att <math>r\not=0</math> så kan ekvationen skrivas <math>\ r\,e^{3i\alpha} = 1\,</math>, som ger efter identifikation av belopp och argument
+
which directly gives that <math>r=0</math> is a solution, i.e. <math>z=0</math>. If we assume that <math>r\not=0</math> then the equation can be written as <math>\ r\,e^{3i\alpha} = 1\,</math>, which gives after matching moduli and arguments
-
{{Fristående formel||<math>\biggl\{\begin{align*} r &= 1\,\mbox{,}\\ 3\alpha &= 0 + 2k\pi\,\mbox{,}\end{align*}\qquad\Leftrightarrow\qquad\biggl\{\begin{align*} r &= 1\,\mbox{,}\\ \alpha &= 2k\pi/3\,\mbox{,}\quad k=0,1,2\,\mbox{.}\end{align*}</math>}}
+
{{Displayed math||<math>\biggl\{\begin{align*} r &= 1\,\mbox{,}\\ 3\alpha &= 0 + 2k\pi\,\mbox{,}\end{align*}\qquad\Leftrightarrow\qquad\biggl\{\begin{align*} r &= 1\,\mbox{,}\\ \alpha &= 2k\pi/3\,\mbox{,}\quad k=0,1,2\,\mbox{.}\end{align*}</math>}}
-
Lösningarna är
+
The solutions are
*<math>\quad z_1 = e^0 = 1\,\mbox{,}</math>
*<math>\quad z_1 = e^0 = 1\,\mbox{,}</math>
*<math>\quad z_2 = e^{2\pi i/ 3} = \cos\frac{2\pi}{3} + i\,\sin\frac{2\pi}{3} = -\frac{1}{2} + \frac{\sqrt3}{2}\,i\,\mbox{,}\vphantom{\Biggl(}</math>
*<math>\quad z_2 = e^{2\pi i/ 3} = \cos\frac{2\pi}{3} + i\,\sin\frac{2\pi}{3} = -\frac{1}{2} + \frac{\sqrt3}{2}\,i\,\mbox{,}\vphantom{\Biggl(}</math>
Line 263: Line 262:
-
== Kvadratkomplettering ==
+
== Completing the square ==
-
Kvadreringsreglerna,
+
The squaring rules,
-
{{Fristående formel||<math>\left\{\begin{align*} (a+b)^2 &= a^2+2ab+b^2\\ (a-b)^2 &= a^2-2ab+b^2\end{align*}\right.</math>}}
+
{{Displayed math||<math>\left\{\begin{align*} (a+b)^2 &= a^2+2ab+b^2\\ (a-b)^2 &= a^2-2ab+b^2\end{align*}\right.</math>}}
-
som vanligtvis används för att utveckla parentesuttryck kan även användas baklänges för att erhålla jämna kvadratuttryck. Exempelvis är
+
which are usually used to expand parenthesis can also be used in reverse to obtain quadratic expressions. For example,
-
{{Fristående formel||<math>\begin{align*} x^2+4x+4 &= (x+2)^2\,\mbox{,}\\ x^2-10x+25 &= (x-5)^2\,\mbox{.}\end{align*}</math>}}
+
{{Displayed math||<math>\begin{align*} x^2+4x+4 &= (x+2)^2\,\mbox{,}\\ x^2-10x+25 &= (x-5)^2\,\mbox{.}\end{align*}</math>}}
-
Detta kan utnyttjas vid lösning av andragradsekvationer, t.ex.
+
This can be used to solve quadratic equations, for example,
-
{{Fristående formel||<math>\begin{align*} x^2+4x+4 &= 9\,\mbox{,}\\ (x+2)^2 &= 9\,\mbox{.}\end{align*}</math>}}
+
{{Displayed math||<math>\begin{align*} x^2+4x+4 &= 9\,\mbox{,}\\ (x+2)^2 &= 9\,\mbox{.}\end{align*}</math>}}
-
Rotutdragning ger sedan att <math>x+2=\pm\sqrt{9}</math> och därmed att <math>x=-2\pm 3</math>, dvs. <math>x=1</math> eller <math>x=-5</math>.
+
Taking roots then gives that <math>x+2=\pm\sqrt{9}</math> and thus that <math>x=-2\pm 3</math>, i.e. <math>x=1</math> or <math>x=-5</math>.
-
Ibland måste man lägga till eller dra ifrån lämpligt tal för att erhålla ett jämnt kvadratuttryck. Ovanstående ekvation kunde exempelvis lika gärna varit skriven
+
Sometimes it is necessary to add or subtract an appropriate number to obtain a suitable expression. The above equation, for example, could just as easily been presented to us as
-
{{Fristående formel||<math>x^2+4x-5=0\,\mbox{.}</math>}}
+
{{Displayed math||<math>x^2+4x-5=0\,\mbox{.}</math>}}
-
Genom att addera 9 till båda led får vi det önskade uttrycket i vänster led:
+
By adding 9 to both sides, we get a suitable expression on the left side:
-
{{Fristående formel||<math>\begin{align*} x^2+4x-5+9 &= 0+9\,\mbox{,}\\ x^2+4x+4\phantom{{}+9} &= 9\,\mbox{.}\end{align*}</math>}}
+
{{Displayed math||<math>\begin{align*} x^2+4x-5+9 &= 0+9\,\mbox{,}\\ x^2+4x+4\phantom{{}+9} &= 9\,\mbox{.}\end{align*}</math>}}
-
Metoden kallas ''kvadratkomplettering''.
+
This method is called ''completing the square''.
<div class="exempel">
<div class="exempel">
-
'''Exempel 10'''
+
''' Example 10'''
-
 
+
<ol type="a">
<ol type="a">
-
<li> Lös ekvationen <math>\ x^2-6x+7=2\,</math>.
+
<li> Solve the equation <math>\ x^2-6x+7=2\,</math>.
 +
<br>
 +
<br>
 +
The coefficient in front of <math>x</math> is <math>-6</math> and it shows that we must have the number <math>(-3)^2=9</math> as the constant term on the left-hand side to make a complete square. By adding <math>2</math> to both sides we achieve this:
 +
{{Displayed math||<math>\begin{align*} x^2-6x+7+2 &= 2+2\,\mbox{,}\\ x^2-6x+9\phantom{{}+2} &= 4\,\mbox{,}\\ \rlap{(x-3)^2}\phantom{x^2-6x+7+2}{} &= 4\,\mbox{.}\end{align*}</math>}}
-
Koefficienten framför <math>x</math> är <math>-6</math> och det visar att vi måste ha talet <math>(-3)^2=9</math> som konstantterm i vänstra ledet för att få ett jämnt kvadratuttryck. Genom att lägga till <math>2</math> på båda sidor åstadkommer vi detta:
+
Taking roots then gives <math>x-3=\pm 2</math>, which means that <math>x=1</math> or <math>x=5</math>.
-
 
+
-
{{Fristående formel||<math>\begin{align*} x^2-6x+7+2 &= 2+2\,\mbox{,}\\ x^2-6x+9\phantom{{}+2} &= 4\,\mbox{,}\\ \rlap{(x-3)^2}\phantom{x^2-6x+7+2}{} &= 4\,\mbox{.}\end{align*}</math>}}
+
-
 
+
-
Rotutdragning ger sedan att <math>x-3=\pm 2</math>, vilket betyder att <math>x=1</math> och <math>x=5</math>.
+
</li>
</li>
-
<li> Lös ekvationen <math>\ z^2+21=4-8z\,</math>.
+
<li> Solve the equation <math>\ z^2+21=4-8z\,</math>.
-
 
+
<br>
-
 
+
<br>
-
Ekvationen kan skrivas <math>z^2+8z+17=0</math>. Genom att dra ifrån 1 på båda sidor får vi en jämn kvadrat i vänster led:
+
The equation can be written as <math>z^2+8z+17=0</math>. By subtracting 1 on both sides, we get a complete square on the left-hand side:
-
{{Fristående formel||<math>\begin{align*} z^2+8z+17-1 &= 0-1\,\mbox{,}\\ z^2+8z+16\phantom{{}-1} &= -1\,\mbox{,}\\ \rlap{(z+4)^2}\phantom{z^2+8z+17-1}{} &= -1\,\mbox{,}\end{align*}</math>}}
+
{{Displayed math||<math>\begin{align*} z^2+8z+17-1 &= 0-1\,\mbox{,}\\ z^2+8z+16\phantom{{}-1} &= -1\,\mbox{,}\\ \rlap{(z+4)^2}\phantom{z^2+8z+17-1}{} &= -1\,\mbox{,}\end{align*}</math>}}
-
och därför är <math>z+4=\pm\sqrt{-1}</math>. Med andra ord är lösningarna <math>z=-4-i</math> och <math>z=-4+i</math>.
+
and thus <math>z+4=\pm\sqrt{-1}</math>. In other words, the solutions are <math>z=-4-i</math> and <math>z=-4+i</math>.
</li>
</li>
</ol>
</ol>
Line 319: Line 317:
</div>
</div>
-
Generellt kan man säga att kvadratkomplettering går ut på att skaffa sig "kvadraten på halva koefficienten för ''x''" som konstantterm i andragradsuttrycket. Denna term kan man alltid lägga till i båda led utan att bry sig om vad som fattas. Om koefficienterna i uttrycket är komplexa så kan man gå till väga på samma sätt.
+
Generally, completing the square may be regarded as arranging that "the square of half the coefficient of the ''x-term''" is the constant term in the quadratic expression. This term can always be added to the two sides without worrying about the other terms and then manipulating the equation. If the coefficients of the expression are complex numbers, one still can go about it in the same way.
<div class="exempel">
<div class="exempel">
-
'''Exempel 11'''
+
''' Example 11'''
-
Lös ekvationen <math>\ x^2-\frac{8}{3}x+1=2\,</math>.
+
Solve the equation <math>\ x^2-\frac{8}{3}x+1=2\,</math>.
-
Halva koefficienten för <math>x</math> är <math>-\tfrac{4}{3}</math>. Vi lägger alltså till <math>\bigl(-\tfrac{4}{3}\bigr)^2=\tfrac{16}{9}</math> i båda led
+
Half the coefficient of <math>x</math> is <math>-\tfrac{4}{3}</math>. We thus add <math>\bigl(-\tfrac{4}{3}\bigr)^2=\tfrac{16}{9}</math> to both sides
-
{{Fristående formel||<math>\begin{align*} x^2-\tfrac{8}{3}x+\tfrac{16}{9}+1 &= 2+\tfrac{16}{9}\,\mbox{,}\\ \rlap{\bigl(x-\tfrac{4}{3}\bigr)^2}\phantom{x^2-\tfrac{8}{3}x+\tfrac{16}{9}}{}+1 &= \tfrac{34}{9}\,\mbox{,}\\ \rlap{\bigl(x-\tfrac{4}{3}\bigr)^2}\phantom{x^2-\tfrac{8}{3}x+\tfrac{16}{9}+1} &= \tfrac{25}{9}\,\mbox{.}\end{align*}</math>}}
+
{{Displayed math||<math>\begin{align*} x^2-\tfrac{8}{3}x+\tfrac{16}{9}+1 &= 2+\tfrac{16}{9}\,\mbox{,}\\ \rlap{\bigl(x-\tfrac{4}{3}\bigr)^2}\phantom{x^2-\tfrac{8}{3}x+\tfrac{16}{9}}{}+1 &= \tfrac{34}{9}\,\mbox{,}\\ \rlap{\bigl(x-\tfrac{4}{3}\bigr)^2}\phantom{x^2-\tfrac{8}{3}x+\tfrac{16}{9}+1} &= \tfrac{25}{9}\,\mbox{.}\end{align*}</math>}}
-
Nu är det enkelt att få fram att <math>x-\tfrac{4}{3}=\pm\tfrac{5}{3}</math> och därmed att <math>x=\tfrac{4}{3}\pm\tfrac{5}{3}</math>, dvs. <math>x=-\tfrac{1}{3}</math> och <math>x=3</math>.
+
Now it's easy to get to <math>x-\tfrac{4}{3}=\pm\tfrac{5}{3}</math> and thus to get that <math>x=\tfrac{4}{3}\pm\tfrac{5}{3}</math>, i.e. <math>x=-\tfrac{1}{3}</math> or <math>x=3</math>.
</div>
</div>
<div class="exempel">
<div class="exempel">
-
'''Exempel 12'''
+
''' Example 12'''
-
Lös ekvationen <math>\ x^2+px+q=0\,</math>.
+
Solve the equation <math>\ x^2+px+q=0\,</math>.
-
Kvadratkomplettering ger
+
Completing the square gives
-
{{Fristående formel||<math>\begin{align*} x^2+px+\Bigl(\frac{p}{2}\Bigr)^2+q &= \Bigl(\frac{p}{2}\Bigr)^2\,\mbox{,}\\ \rlap{\Bigl(x+\frac{p}{2}\Bigr)^2}\phantom{x^2+px+\Bigl(\frac{p}{2}\Bigr)^2+q}{} &= \Bigl(\frac{p}{2}\Bigr)^2-q\,\mbox{,}\\ \rlap{x+\frac{p}{2}}\phantom{x^2+px+\Bigl(\frac{p}{2}\Bigr)^2+q}{} &= \pm \sqrt{\Bigl(\frac{p}{2}\Bigr)^2-q}\ \mbox{.}\end{align*}</math>}}
+
{{Displayed math||<math>\begin{align*} x^2+px+\Bigl(\frac{p}{2}\Bigr)^2+q &= \Bigl(\frac{p}{2}\Bigr)^2\,\mbox{,}\\ \rlap{\Bigl(x+\frac{p}{2}\Bigr)^2}\phantom{x^2+px+\Bigl(\frac{p}{2}\Bigr)^2+q}{} &= \Bigl(\frac{p}{2}\Bigr)^2-q\,\mbox{,}\\ \rlap{x+\frac{p}{2}}\phantom{x^2+px+\Bigl(\frac{p}{2}\Bigr)^2+q}{} &= \pm \sqrt{\Bigl(\frac{p}{2}\Bigr)^2-q}\ \mbox{.}\end{align*}</math>}}
-
Detta ger den vanliga formeln, ''pq-formeln'', för lösningar till andragradsekvationer
+
This gives the usual formula, ''pq-formula'', for solutions to quadratic equations
-
{{Fristående formel||<math>x=-\frac{p}{2}\pm \sqrt{\Bigl(\frac{p}{2}\Bigr)^2-q}\,\mbox{.}</math>}}
+
{{Displayed math||<math>x=-\frac{p}{2}\pm \sqrt{\Bigl(\frac{p}{2}\Bigr)^2-q}\,\mbox{.}</math>}}
</div>
</div>
<div class="exempel">
<div class="exempel">
-
'''Exempel 13'''
+
''' Example 13'''
-
Lös ekvationen <math>\ z^2-(12+4i)z-4+24i=0\,</math>.
+
Solve the equation <math>\ z^2-(12+4i)z-4+24i=0\,</math>.
-
Halva koefficienten för <math>z</math> är <math>-(6+2i)</math> så vi adderar kvadraten på detta uttryck till båda led
+
Half the coefficient of <math>z</math> is <math>-(6+2i)</math> so we add the square of this expression to both sides
-
{{Fristående formel||<math>z^2-(12+4i)z+(-(6+2i))^2-4+24i=(-(6+2i))^2\,\mbox{.}</math>}}
 
-
Räknar vi ut kvadraten <math>\ (-(6+2i))^2=36+24i+4i^2=32+24i\ </math> i högerledet och kvadratkompletterar vänsterledet fås
+
{{Displayed math||<math>z^2-(12+4i)z+(-(6+2i))^2-4+24i=(-(6+2i))^2\,\mbox{.}</math>}}
-
{{Fristående formel||<math>\begin{align*} (z-(6+2i))^2-4+24i &= 32+24i\,\mbox{,}\\ \rlap{(z-(6+2i))^2}\phantom{(z-(6+2i))^2-4+24i}{} &= 36\,\mbox{.}\end{align*}</math>}}
+
Expanding the square on the right-hand side <math>\ (-(6+2i))^2=36+24i+4i^2=32+24i\ </math> and completing the square on the left-hand side gives
-
Efter en rotutdragning har vi att <math>\ z-(6+2i)=\pm 6\ </math> och därmed är lösningarna <math>z=12+2i</math> och <math>z=2i</math>.
+
{{Displayed math||<math>\begin{align*} (z-(6+2i))^2-4+24i &= 32+24i\,\mbox{,}\\ \rlap{(z-(6+2i))^2}\phantom{(z-(6+2i))^2-4+24i}{} &= 36\,\mbox{.}\end{align*}</math>}}
 +
 
 +
After a taking roots, we have that <math>\ z-(6+2i)=\pm 6\ </math> and therefore the solutions are <math>z=12+2i</math> and <math>z=2i</math>.
</div>
</div>
-
Om man vill åstadkomma en jämn kvadrat i ett fristående uttryck så kan man också göra på samma sätt. För att inte ändra uttryckets värde lägger man då till och drar ifrån den saknade konstanttermen, exempelvis
+
If one wants to bring about a square in an expression one can use the same technique. In order not to change the value of the expression one both adds and subtracts the missing constant term, such as in the following,
-
{{Fristående formel||<math>\begin{align*} x^2+10x+3 &= x^2+10x+25+3-25\\ &= (x+5)^2-22\,\mbox{.}\end{align*}</math>}}
+
{{Displayed math||<math>\begin{align*} x^2+10x+3 &= x^2+10x+25+3-25\\ &= (x+5)^2-22\,\mbox{.}\end{align*}</math>}}
<div class="exempel">
<div class="exempel">
-
'''Exempel 14'''
+
''' Example 14'''
-
Kvadratkomplettera uttrycket <math>\ z^2+(2-4i)z+1-3i\,</math>.
+
Complete the square in the expression <math>\ z^2+(2-4i)z+1-3i\,</math>.
-
Lägg till och dra ifrån termen <math>\bigl(\frac{1}{2}(2-4i)\bigr)^2=(1-2i)^2=-3-4i\,</math>,
+
Add and subtract the term <math>\bigl(\frac{1}{2}(2-4i)\bigr)^2=(1-2i)^2=-3-4i\,</math>,
-
{{Fristående formel||<math>\begin{align*} z^2+(2-4i)z+1-3i &= z^2+(2-4i)z+(1-2i)^2-(1-2i)^2+1-3i\\ &= \bigl(z+(1-2i)\bigr)^2-(1-2i)^2+1-3i\\ &= \bigl(z+(1-2i)\bigr)^2-(-3-4i)+1-3i\\ &= \bigl(z+(1-2i)\bigr)^2+4+i\,\mbox{.}\end{align*}</math>}}
+
{{Displayed math||<math>\begin{align*} z^2+(2-4i)z+1-3i &= z^2+(2-4i)z+(1-2i)^2-(1-2i)^2+1-3i\\ &= \bigl(z+(1-2i)\bigr)^2-(1-2i)^2+1-3i\\ &= \bigl(z+(1-2i)\bigr)^2-(-3-4i)+1-3i\\ &= \bigl(z+(1-2i)\bigr)^2+4+i\,\mbox{.}\end{align*}</math>}}
</div>
</div>
-
== Lösning med formel ==
+
==Solving using a formula==
-
Att lösa andragradsekvationer är ibland enklast med hjälp av den vanliga formeln för andragradsekvationer. Ibland kan man dock råka ut för uttryck av typen <math>\sqrt{a+ib}</math>. Man kan då ansätta
+
To solve quadratic equations sometimes the simplest method is to use the usual formula for quadratic equations. However, this may lead to that one ends up with terms of the type <math>\sqrt{a+ib}</math>. One can then assume
-
{{Fristående formel||<math>z=x+iy=\sqrt{a+ib}\,\mbox{.}</math>}}
+
{{Displayed math||<math>z=x+iy=\sqrt{a+ib}\,\mbox{.}</math>}}
-
Genom att kvadrera båda led får vi att
+
By squaring both sides we get
-
{{Fristående formel||<math>\begin{align*} (x+iy)^2 &= a+ib\,\mbox{,}\\ x^2 - y^2 + 2xy\,i &= a+ib\,\mbox{.}\end{align*}</math>}}
+
{{Displayed math||<math>\begin{align*} (x+iy)^2 &= a+ib\,\mbox{,}\\ x^2 - y^2 + 2xy\,i &= a+ib\,\mbox{.}\end{align*}</math>}}
-
Identifikation av real- och imaginärdel ger nu att
+
Matching the real and imaginary parts gives
-
{{Fristående formel||<math>\left\{\begin{align*} &x^2 - y^2 = a\,\mbox{,}\\ &2xy=b\,\mbox{.}\end{align*}\right.</math>}}
+
{{Displayed math||<math>\left\{\begin{align*} &x^2 - y^2 = a\,\mbox{,}\\ &2xy=b\,\mbox{.}\end{align*}\right.</math>}}
-
Detta ekvationssystem kan lösas med substitution, t.ex. <math>y= b/(2x)</math> som kan sättas in i den första ekvationen.
+
These equations can be solved by substitution, for example, <math>y= b/(2x)</math> can be inserted in the first equation.
<div class="exempel">
<div class="exempel">
-
'''Exempel 15'''
+
''' Example 15'''
-
Beräkna <math>\ \sqrt{-3-4i}\,</math>.
+
Calculate <math>\ \sqrt{-3-4i}\,</math>.
-
Sätt <math>\ x+iy=\sqrt{-3-4i}\ </math> där <math>x</math> och <math>y</math> är reella tal. Kvadrering av båda led ger
+
Put <math>\ x+iy=\sqrt{-3-4i}\ </math> where <math>x</math> and <math>y</math> are real numbers. Squaring both sides gives
-
{{Fristående formel||<math>\begin{align*} (x+iy)^2 &= -3-4i\,\mbox{,}\\ x^2 - y^2 + 2xyi &= -3-4i\,\mbox{,}\end{align*}</math>}}
+
{{Displayed math||<math>\begin{align*} (x+iy)^2 &= -3-4i\,\mbox{,}\\ x^2 - y^2 + 2xyi &= -3-4i\,\mbox{,}\end{align*}</math>}}
-
vilket leder till ekvationssystemet
+
which leads to the system of equations
-
{{Fristående formel||<math>\Bigl\{\begin{align*} x^2 - y^2 &= -3\,\mbox{,}\\ 2xy&= -4\,\mbox{.}\end{align*}</math>}}
+
{{Displayed math||<math>\Bigl\{\begin{align*} x^2 - y^2 &= -3\,\mbox{,}\\ 2xy&= -4\,\mbox{.}\end{align*}</math>}}
-
Ur den andra ekvationen kan vi lösa ut <math>\ y=-4/(2x) = -2/x\ </math> och sätts detta in i den första ekvationen fås att
+
From the second equation, we can solve for <math>\ y=-4/(2x) = -2/x\ </math> and put it into the first equation to get
-
{{Fristående formel||<math>x^2-\frac{4}{x^2} = -3 \quad \Leftrightarrow \quad x^4 +3x^2 - 4=0\,\mbox{.}</math>}}
+
{{Displayed math||<math>x^2-\frac{4}{x^2} = -3 \quad \Leftrightarrow \quad x^4 +3x^2 - 4=0\,\mbox{.}</math>}}
-
Denna ekvation är en andragradsekvation i <math>x^2</math> vilket man ser lättare genom att sätta <math>t=x^2</math>,
+
This is a quadratic equation in <math>x^2</math> which can be seen more easily by putting <math>t=x^2</math>,
-
{{Fristående formel||<math>t^2 +3t -4=0\,\mbox{.}</math>}}
+
{{Displayed math||<math>t^2 +3t -4=0\,\mbox{.}</math>}}
-
Lösningarna är <math>t = 1</math> och <math>t = -4</math>. Den sista lösningen måste förkastas, eftersom <math>x</math> och <math>y</math> är reella tal och då kan inte <math>x^2=-4</math>. Vi får att <math>x=\pm\sqrt{1}</math>, vilket ger oss två möjligheter
+
The solutions are <math>t = 1</math> and <math>t = -4</math>. The latter solution must be rejected, as <math>x</math> and <math>y</math> have been assumed to be real numbers, and thus <math>x^2=-4</math> cannot be true. We get <math>x=\pm\sqrt{1}</math>, which gives us two possible solutions
-
* <math>\ x=-1\ </math> som ger att <math>\ y=-2/(-1)=2\,</math>,
+
* <math>\ x=-1\ </math> which gives <math>\ y=-2/(-1)=2\,</math>,
-
* <math>\ x=1\ </math> som ger att <math>\ y=-2/1=-2\,</math>.
+
* <math>\ x=1\ </math> which gives <math>\ y=-2/1=-2\,</math>.
-
Vi har alltså kommit fram till att
+
So we can conclude that
-
{{Fristående formel||<math>\sqrt{-3-4i} = \biggl\{\begin{align*} &\phantom{-}1-2i\,\mbox{,}\\ &-1+2i\,\mbox{.}\end{align*}</math>}}
+
{{Displayed math||<math>\sqrt{-3-4i} = \biggl\{\begin{align*} &\phantom{-}1-2i\,\mbox{,}\\ &-1+2i\,\mbox{.}\end{align*}</math>}}
</div>
</div>
<div class="exempel">
<div class="exempel">
-
'''Exempel 16'''
+
''' Example 16'''
<ol type="a">
<ol type="a">
-
<li> Lös ekvationen <math>\ z^2-2z+10=0\,</math>.
+
<li> Solve the equation <math>\ z^2-2z+10=0\,</math>.
 +
<br>
 +
<br>
 +
The formula for solutions to a quadratic equations (see example 3) gives that
-
 
+
{{Displayed math||<math>z= 1\pm \sqrt{1-10} = 1\pm \sqrt{-9}= 1\pm 3i\,\mbox{.}</math>}}
-
Formeln för lösningar till en andragradsekvation (se exempel 3) ger att
+
-
 
+
-
{{Fristående formel||<math>z= 1\pm \sqrt{1-10} = 1\pm \sqrt{-9}= 1\pm 3i\,\mbox{.}</math>}}
+
</li>
</li>
-
<li> Lös ekvationen <math>\ z^2 + (4-2i)z -4i=0\,\mbox{.}</math>
+
<li> Solve the equation <math>\ z^2 + (4-2i)z -4i=0\,\mbox{.}</math>
-
 
+
<br>
-
 
+
<br>
-
Även här ger ''pq''-formeln lösningarna direkt
+
Here, once again , the ''pq''-formula may be used giving the solutions directly
-
{{Fristående formel||<math>\begin{align*} z &= -2+i\pm\sqrt{\smash{(-2+i)^2+4i}\vphantom{i^2}} = -2+i\pm\sqrt{4-4i+i^{\,2}+4i}\\ &=-2+i\pm\sqrt{3} = -2\pm\sqrt{3}+i\,\mbox{.}\end{align*}</math>}}
+
{{Displayed math||<math>\begin{align*} z &= -2+i\pm\sqrt{\smash{(-2+i)^2+4i}\vphantom{i^2}} = -2+i\pm\sqrt{4-4i+i^{\,2}+4i}\\ &=-2+i\pm\sqrt{3} = -2\pm\sqrt{3}+i\,\mbox{.}\end{align*}</math>}}
</li>
</li>
-
<li> Lös ekvationen <math>\ iz^2+(2+6i)z+2+11i=0\,\mbox{.}</math>
+
<li> Solve the equation <math>\ iz^2+(2+6i)z+2+11i=0\,\mbox{.}</math>
-
 
+
<br>
-
 
+
<br>
-
Division av båda led med <math>i</math> ger att
+
Division of both sides with <math>i</math> gives
-
{{Fristående formel||<math>\begin{align*} z^2 + \frac{2+6i}{i}z +\frac{2+11i}{i} &= 0\,\mbox{,}\\ z^2+ (6-2i)z + 11-2i &= 0\,\mbox{.}\end{align*}</math>}}
+
{{Displayed math||<math>\begin{align*} z^2 + \frac{2+6i}{i}z +\frac{2+11i}{i} &= 0\,\mbox{,}\\ z^2+ (6-2i)z + 11-2i &= 0\,\mbox{.}\end{align*}</math>}}
-
Applicerar vi sedan ''pq''-formeln så fås att
+
Applying the ''pq''- formula gives
-
{{Fristående formel||<math>\begin{align*} z &= -3+i \pm \sqrt{\smash{(-3+i)^2 -(11-2i)}\vphantom{i^2}}\\ &= -3+i \pm \sqrt{-3-4i}\\ &= -3+i\pm(1-2i)\end{align*}</math>}}
+
{{Displayed math||<math>\begin{align*} z &= -3+i \pm \sqrt{\smash{(-3+i)^2 -(11-2i)}\vphantom{i^2}}\\ &= -3+i \pm \sqrt{-3-4i}\\ &= -3+i\pm(1-2i)\end{align*}</math>}}
-
där vi använt det framräknade värdet på <math>\ \sqrt{-3-4i}\ </math> från exempel 15. Lösningarna är alltså
+
where we used the resulting value of<math>\ \sqrt{-3-4i}\ </math> which we obtained in example 15. The solutions are therefore
-
{{Fristående formel||<math>z=\biggl\{\begin{align*} &-2-i\,\mbox{,}\\ &-4+3i\,\mbox{.}\end{align*}</math>}}
+
{{Displayed math||<math>z=\biggl\{\begin{align*} &-2-i\,\mbox{,}\\ &-4+3i\,\mbox{.}\end{align*}</math>}}
</li>
</li>
</ol>
</ol>
</div>
</div>

Current revision

       Theory          Exercises      

Contents:

  • De Moivre's formula
  • Binomial equations
  • Exponential function
  • Euler's formula
  • Completing the square
  • Quadratic equations

Learning outcomes:

After this section, you will have learned how to:

  • Calculate the powers of complex numbers with de Moivre's formula.
  • Calculate the roots of certain complex numbers by rewriting to polar form.
  • Solve binomial equations.
  • Complete the square for complex quadratic expressions.
  • Solve complex quadratic equations.

De Moivre's formula

The computational rules \displaystyle \ \arg (zw) = \arg z + \arg w\ and \displaystyle \ |\,zw\,| = |\,z\,|\cdot|\,w\,|\ mean that

\displaystyle \biggl\{\begin{align*}&\arg (z\cdot z) = \arg z + \arg z \\ &|\,z\cdot z\,| = |\,z\,|\cdot|\,z\,|\end{align*}\qquad\biggl\{\begin{align*}&\arg z^3 = 3 \arg z \cr &|\,z^3\,| = |\,z\,|^3\end{align*}\qquad\text{etc.}

For an arbitrary number \displaystyle z=r\,(\cos \alpha +i\,\sin \alpha), we therefore have the following relationship

\displaystyle z^n = \bigl(r\,(\cos \alpha +i\sin \alpha)\bigr)^n = r^n\,(\cos n\alpha +i\,\sin n\alpha)\,\mbox{.}

If \displaystyle |\,z\,|=1, (i.e. \displaystyle z lies on the unit circle) then one has the special relationship

\displaystyle (\cos \alpha +i\,\sin \alpha)^n = \cos n\alpha +i\,\sin n\alpha\,\mbox{,}

which is usually referred to as de Moivres formula. This relationship is very useful when it comes to deriving trigonometric identities and calculating the roots and powers of complex numbers.


Example 1


If \displaystyle z = \frac{1+i}{\sqrt2}, determine \displaystyle z^3 and \displaystyle z^{100}.


We write \displaystyle z in polar form \displaystyle \ \ z= \frac{1}{\sqrt2} + \frac{i}{\sqrt2} = 1\cdot \Bigl(\cos \frac{\pi}{4} + i\sin \frac{\pi}{4}\Bigr)\ \ and Moivre's formula gives

\displaystyle \begin{align*}z^3 &= \Bigl( \cos\frac{\pi}{4} + i\,\sin\frac{\pi}{4}\,\Bigr)^3 = \cos\frac{3\pi}{4} + i\,\sin\frac{3\pi}{4} = -\frac{1}{\sqrt2} + \frac{1}{\sqrt2}\,i = \frac{-1+i}{\sqrt2}\,\mbox{,}\\[6pt] z^{100} &= \Bigl( \cos\frac{\pi}{4} + i\,\sin\frac{\pi}{4}\,\Bigr)^{100} = \cos\frac{100\pi}{4} + i\,\sin\frac{100\pi}{4}\\[4pt] &= \cos 25\pi + i\,\sin 25\pi = \cos \pi + i\,\sin \pi = -1\,\mbox{.}\end{align*}

Example 2


In the usual way one does an expansion by means of the squaring rules

\displaystyle \begin{align*} (\cos v + i\,\sin v)^2 &= \cos^2\!v + i^2 \sin^2\!v + 2i \sin v \cos v\\ &= \cos^2\!v - \sin^2\!v + 2i \sin v \cos v\end{align*}

and according to de Moivre's formula one gets

\displaystyle (\cos v + i \sin v)^2 = \cos 2v + i \sin 2v\,\mbox{.}

If one equates the real and imaginary parts of the two expressions one gets the well-known trigonometric formulas


\displaystyle \biggl\{\begin{align*}\cos 2v &= \cos^2\!v - \sin^2\!v\,\mbox{,}\\[2pt] \sin 2v&= 2 \sin v \cos v\,\mbox{.}\end{align*}

Example 3


Simplify \displaystyle \ \ \frac{(\sqrt3 + i)^{14}}{(1+i\sqrt3\,)^7(1+i)^{10}}\,.


We write the numbers \displaystyle \sqrt{3}+i, \displaystyle 1+i\sqrt{3} and \displaystyle 1+i in polar form

  • \displaystyle \quad\sqrt{3} + i = 2\Bigl(\cos\frac{\pi}{6} + i\,\sin\frac{\pi}{6}\,\Bigr)\vphantom{\biggl(},
  • \displaystyle \quad 1+i\sqrt{3} = 2\Bigl(\cos\frac{\pi}{3} + i\,\sin\frac{\pi}{3}\,\Bigr)\vphantom{\biggl(},
  • \displaystyle \quad 1+i = \sqrt2\,\Bigl(\cos\frac{\pi}{4} + i\,\sin\frac{\pi}{4}\,\Bigr)\vphantom{\biggl(}.

Then we get with de Moivre's formula

\displaystyle \frac{(\sqrt3 + i)^{14}}{(1+i\sqrt3\,)^7(1+i)^{10}} = \frac{\displaystyle 2^{14}\Bigl(\cos\frac{14\pi}{6} + i\,\sin \frac{14\pi}{6}\,\Bigr)\vphantom{\biggl(}}{\displaystyle 2^7\Bigl(\cos \frac{7\pi}{3} + i\,\sin\frac{7\pi}{3}\,\Bigr) \cdot (\sqrt{2}\,)^{10}\Bigl(\cos\frac{10\pi}{4} + i\,\sin\frac{10\pi}{4}\,\Bigr)\vphantom{\biggl(}}

and this expression can be simplified by performing multiplication and division in polar form

\displaystyle \begin{align*}\frac{\displaystyle 2^{14}\Bigl(\cos\frac{14\pi}{6} + i\,\sin\frac{14\pi}{6}\,\Bigr)\vphantom{\biggl(}} {\displaystyle 2^{12}\Bigl(\cos\frac{29\pi}{6} + i\,\sin\frac{29\pi}{6}\,\Bigr)\vphantom{\biggl(}} &= 2^2 \Bigl(\cos\Bigl( -\frac{15\pi}{6}\,\Bigr) + i\,\sin\Bigl( -\frac{15\pi}{6}\,\Bigr)\,\Bigr)\\[8pt] &= 4\Bigl(\cos \Bigl( -\frac{\pi}{2}\,\Bigr) + i\,\sin\Bigl( -\frac{\pi}{2}\,\Bigr)\,\Bigr) = -4i\,\mbox{.}\end{align*}


Binomial equations

A complex number \displaystyle z is called the nth root of the complex number \displaystyle w if

\displaystyle z^n= w \mbox{.}

The above relationship can also be seen as an equation in which \displaystyle z is unknown. This type of equation is called a binomial equation. The solutions are obtained by rewriting both sides in polar form and comparing both the moduli and the arguments.

For a given number \displaystyle w=|\,w\,|\,(\cos \theta + i\,\sin \theta) one assumes that \displaystyle z=r\,(\cos \alpha + i\, \sin \alpha) and after insertion, the binomial equation becomes

\displaystyle r^{\,n}\,(\cos n\alpha + i \sin n\alpha) =|w|\,(\cos \theta + i \sin \theta)\,\mbox{,}

where de Moivres formula has been used on the left-hand side. Equating moduli and arguments gives

\displaystyle \biggl\{\begin{align*} r^{\,n} &= |w|\,\mbox{,}\\ n\alpha &= \theta + k\cdot 2\pi\,\mbox{.}\end{align*}

Note that we add multiples of \displaystyle 2\pi to include all possible values of the argument that have the same direction as \displaystyle \theta. One gets

\displaystyle \biggl\{\begin{align*} r &={\textstyle\sqrt[\scriptstyle n]{|w|}},\\ \alpha &= (\theta + 2k\pi)/n\,, \quad k=0, \pm 1, \pm 2, \ldots\end{align*}

This gives one value of \displaystyle r, but infinitely many values of \displaystyle \alpha. Despite this, there are not infinitely many solutions. From \displaystyle k = 0 to \displaystyle k = n - 1 one gets different arguments for \displaystyle z and thus different positions for \displaystyle z in the complex plane. For the other values of \displaystyle k due to the periodicity of the sine and cosine, one returns to these positions and therefore no new solutions are obtained. This reasoning shows that the equation \displaystyle z^n=w has exactly \displaystyle n roots.

Comment. Note that the arguments of the roots differ from each other by \displaystyle 2\pi/n so that the roots are evenly distributed on a circle with radius \displaystyle \sqrt[\scriptstyle n]{|w|} and form corners in a regular n-gon (an n sided polygon).


Exempel 4


Solve the binomial equation \displaystyle \ z^4= 16\,i\,.


Write \displaystyle z and \displaystyle 16\,i in polar form

  • \displaystyle \quad z=r\,(\cos \alpha + i\,\sin \alpha)\,,
  • \displaystyle \quad 16\,i= 16\Bigl(\cos\frac{\pi}{2} + i\,\sin\frac{\pi}{2}\,\Bigr)\vphantom{\biggl(}.

This turns the equation \displaystyle \ z^4=16\,i\ into

\displaystyle r^4\,(\cos 4\alpha + i\,\sin 4\alpha) = 16\Bigl(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\,\Bigr)\,\mbox{.}

Matching the moduli and arguments on both sides gives

\displaystyle \biggl\{\begin{align*} r^4 &= 16,\\ 4\alpha &= \pi/2 + k\cdot 2\pi,\end{align*}\qquad\text{i.e.}\qquad\biggl\{\begin{align*} r &= \sqrt[\scriptstyle 4]{16}= 2, \\ \alpha &= \pi/8 + k\pi/2\,,\quad k=0,1,2,3.\end{align*}

The solutions to the equation are thus

\displaystyle \left\{\begin{align*}\displaystyle z_1&= 2\Bigl(\cos \frac{\pi}{8} + i\,\sin\frac{\pi}{8}\,\Bigr),\\[4pt]

\displaystyle z_2 &= 2\Bigl(\cos\frac{5\pi}{8} + i\,\sin\frac{5\pi}{8}\,\Bigr),\vphantom{\biggl(}\\[4pt] \displaystyle z_3 &= 2\Bigl(\cos\frac{9\pi}{8} + i\,\sin\frac{9\pi}{8}\,\Bigr),\vphantom{\biggl(}\\[4pt] \displaystyle z_4 &= 2\Bigl(\cos\frac{13\pi}{8} + i\,\sin\frac{13\pi}{8}\,\Bigr).\end{align*}\right.

[Image]


Exponential form of complex numbers

If we manipulate \displaystyle i as if it were a real number and treat a complex number \displaystyle z as a function of just \displaystyle \alpha ( where \displaystyle r is a constant),

\displaystyle f(\alpha) = r\,(\cos \alpha + i\,\sin \alpha)

we get after differentiation

\displaystyle \begin{align*} f^{\,\prime}(\alpha) &= -r\sin \alpha + r\,i\,\cos \alpha = r\,i^2 \sin \alpha + r\,i\,\cos \alpha = i\,r\,(\cos \alpha + i\,\sin \alpha) = i\,f(\alpha)\\ f^{\,\prime\prime} (\alpha) &= - r\,\cos \alpha - r\,i\,\sin \alpha = i^2\,r\,(\cos \alpha + i\,\sin \alpha) = i^2\, f(\alpha)\cr &\text{etc.}\end{align*}

The only real-valued functions which behave like this are \displaystyle f(x)= e^{\,kx}, which justifies the definition

\displaystyle e^{\,i\alpha} = \cos \alpha + i\,\sin \alpha\,\mbox{.}

This definition turns out to be a completely natural generalisation of the exponential function for the real numbers. Putting \displaystyle z=a+ib one gets

\displaystyle e^{\,z} = e^{\,a+ib} = e^{\,a} \cdot e^{\,ib} = e^{\,a}(\cos b + i\,\sin b)\,\mbox{.}

The definition of \displaystyle e^{\,z} may be regarded as a convenient notation for the polar form of a complex number, as \displaystyle z=r\,(\cos \alpha + i\,\sin \alpha) = r\,e^{\,i\alpha}\,.


Example 5


For a real number \displaystyle z the definition is consistent with the case when the exponent is real, as \displaystyle z=a+0\cdot i which gives

\displaystyle e^{\,z} = e^{\,a+0\cdot i} = e^a (\cos 0 + i \sin 0) = e^a \cdot 1 = e^a\,\mbox{.}

Example 6


A further indication of why the above definition is so natural is given by the relationship

\displaystyle \bigl(e^{\,i\alpha}\bigr)^n = (\cos \alpha + i \sin \alpha)^n = \cos n\alpha + i \sin n \alpha = e^{\,in\alpha}\,\mbox{,}

which demonstrates that de Moivre's formula is actually identical to the well-known law of exponents,

\displaystyle \left(a^x\right)^y = a^{x\,y}\,\mbox{.}

Example 7


From the above definition, one can obtain the relationship

\displaystyle e^{\pi\,i} = \cos \pi + i \sin \pi = -1

which connects together the, generally regarded, most basic numbers in mathematics: \displaystyle e, \displaystyle \pi, \displaystyle i and 1. This relationship is seen by many as the most beautiful in mathematics and was discovered by Euler in the early 1700's.

Example 8


Solve the equation \displaystyle \ (z+i)^3 = -8i.


Put \displaystyle w = z + i. We then get the binomial equation \displaystyle \ w^3=-8i\,. To begin with, we rewrite \displaystyle w and \displaystyle -8i in polar form

  • \displaystyle \quad w=r\,(\cos \alpha + i\,\sin \alpha) = r\,e^{i\alpha}\,\mbox{,}
  • \displaystyle \quad -8i = 8\Bigl(\cos \frac{3\pi}{2} + i\,\sin\frac{3\pi}{2}\,\Bigr) = 8\,e^{3\pi i/2}\vphantom{\biggl(}\,\mbox{.}

The equation in polar form is \displaystyle \ r^3e^{3\alpha i}=8\,e^{3\pi i/2}\ and matching the moduli and arguments on both sides gives,

\displaystyle \biggl\{\begin{align*} r^3 &= 8\,\mbox{,}\\ 3\alpha &= 3\pi/2+2k\pi\,\mbox{,}\end{align*}\qquad\Leftrightarrow\qquad\biggl\{\begin{align*} r&=\sqrt[\scriptstyle 3]{8}\,\mbox{,}\\ \alpha&= \pi/2+2k\pi/3\,,\quad k=0,1,2\,\mbox{.}\end{align*}

The roots of the equation are thus

  • \displaystyle \quad w_1 = 2\,e^{\pi i/2} = 2\Bigl(\cos \frac{\pi}{2} + i\,\sin\frac{\pi}{2}\,\Bigr) = 2i\,\mbox{,}\quad\vphantom{\biggl(}
  • \displaystyle \quad w_2 = 2\,e^{7\pi i/6} = 2\Bigl(\cos\frac{7\pi}{6} + i\,\sin\frac{7\pi}{6}\,\Bigr) = -\sqrt{3}-i\,\mbox{,}\quad\vphantom{\Biggl(}
  • \displaystyle \quad w_3 = 2\,e^{11\pi i/6} = 2\Bigl(\cos\frac{11\pi}{6} + i\,\sin\frac{11\pi}{6}\,\Bigr) = \sqrt{3}-i\,\mbox{,}\quad\vphantom{\biggl(}

i.e. \displaystyle z_1 = 2i-i=i, \displaystyle z_2 = - \sqrt{3}-2i and \displaystyle z_3 = \sqrt{3}-2i.

Example 9


Solve \displaystyle \ z^2 = \overline{z}\,.


If for \displaystyle z=a+ib one has \displaystyle |\,z\,|=r and \displaystyle \arg z = \alpha then for \displaystyle \overline{z}= a-ib one gets \displaystyle |\,\overline{z}\,|=r and \displaystyle \arg \overline{z} = - \alpha.This means that \displaystyle z=r\,e^{i\alpha} and \displaystyle \overline{z} = r\,e^{-i\alpha}. The equation can be written

\displaystyle (r\,e^{i\alpha})^2 = r\,e^{-i\alpha}\qquad\text{or}\qquad r^2 e^{2i\alpha}= r\,e^{-i\alpha}\,\mbox{,}

which directly gives that \displaystyle r=0 is a solution, i.e. \displaystyle z=0. If we assume that \displaystyle r\not=0 then the equation can be written as \displaystyle \ r\,e^{3i\alpha} = 1\,, which gives after matching moduli and arguments

\displaystyle \biggl\{\begin{align*} r &= 1\,\mbox{,}\\ 3\alpha &= 0 + 2k\pi\,\mbox{,}\end{align*}\qquad\Leftrightarrow\qquad\biggl\{\begin{align*} r &= 1\,\mbox{,}\\ \alpha &= 2k\pi/3\,\mbox{,}\quad k=0,1,2\,\mbox{.}\end{align*}

The solutions are

  • \displaystyle \quad z_1 = e^0 = 1\,\mbox{,}
  • \displaystyle \quad z_2 = e^{2\pi i/ 3} = \cos\frac{2\pi}{3} + i\,\sin\frac{2\pi}{3} = -\frac{1}{2} + \frac{\sqrt3}{2}\,i\,\mbox{,}\vphantom{\Biggl(}
  • \displaystyle \quad z_3 = e^{4\pi i/ 3} = \cos\frac{4\pi}{3} + i\,\sin\frac{4\pi}{3} = -\frac{1}{2} - \frac{\sqrt3}{2}\,i\,\mbox{,}
  • \displaystyle \quad z_4 = 0\,\mbox{.}


Completing the square

The squaring rules,

\displaystyle \left\{\begin{align*} (a+b)^2 &= a^2+2ab+b^2\\ (a-b)^2 &= a^2-2ab+b^2\end{align*}\right.

which are usually used to expand parenthesis can also be used in reverse to obtain quadratic expressions. For example,

\displaystyle \begin{align*} x^2+4x+4 &= (x+2)^2\,\mbox{,}\\ x^2-10x+25 &= (x-5)^2\,\mbox{.}\end{align*}

This can be used to solve quadratic equations, for example,

\displaystyle \begin{align*} x^2+4x+4 &= 9\,\mbox{,}\\ (x+2)^2 &= 9\,\mbox{.}\end{align*}

Taking roots then gives that \displaystyle x+2=\pm\sqrt{9} and thus that \displaystyle x=-2\pm 3, i.e. \displaystyle x=1 or \displaystyle x=-5.


Sometimes it is necessary to add or subtract an appropriate number to obtain a suitable expression. The above equation, for example, could just as easily been presented to us as

\displaystyle x^2+4x-5=0\,\mbox{.}

By adding 9 to both sides, we get a suitable expression on the left side:

\displaystyle \begin{align*} x^2+4x-5+9 &= 0+9\,\mbox{,}\\ x^2+4x+4\phantom{{}+9} &= 9\,\mbox{.}\end{align*}

This method is called completing the square.


Example 10

  1. Solve the equation \displaystyle \ x^2-6x+7=2\,.

    The coefficient in front of \displaystyle x is \displaystyle -6 and it shows that we must have the number \displaystyle (-3)^2=9 as the constant term on the left-hand side to make a complete square. By adding \displaystyle 2 to both sides we achieve this:
    \displaystyle \begin{align*} x^2-6x+7+2 &= 2+2\,\mbox{,}\\ x^2-6x+9\phantom{{}+2} &= 4\,\mbox{,}\\ \rlap{(x-3)^2}\phantom{x^2-6x+7+2}{} &= 4\,\mbox{.}\end{align*}

    Taking roots then gives \displaystyle x-3=\pm 2, which means that \displaystyle x=1 or \displaystyle x=5.

  2. Solve the equation \displaystyle \ z^2+21=4-8z\,.

    The equation can be written as \displaystyle z^2+8z+17=0. By subtracting 1 on both sides, we get a complete square on the left-hand side:
    \displaystyle \begin{align*} z^2+8z+17-1 &= 0-1\,\mbox{,}\\ z^2+8z+16\phantom{{}-1} &= -1\,\mbox{,}\\ \rlap{(z+4)^2}\phantom{z^2+8z+17-1}{} &= -1\,\mbox{,}\end{align*}

    and thus \displaystyle z+4=\pm\sqrt{-1}. In other words, the solutions are \displaystyle z=-4-i and \displaystyle z=-4+i.

Generally, completing the square may be regarded as arranging that "the square of half the coefficient of the x-term" is the constant term in the quadratic expression. This term can always be added to the two sides without worrying about the other terms and then manipulating the equation. If the coefficients of the expression are complex numbers, one still can go about it in the same way.


Example 11


Solve the equation \displaystyle \ x^2-\frac{8}{3}x+1=2\,.


Half the coefficient of \displaystyle x is \displaystyle -\tfrac{4}{3}. We thus add \displaystyle \bigl(-\tfrac{4}{3}\bigr)^2=\tfrac{16}{9} to both sides

\displaystyle \begin{align*} x^2-\tfrac{8}{3}x+\tfrac{16}{9}+1 &= 2+\tfrac{16}{9}\,\mbox{,}\\ \rlap{\bigl(x-\tfrac{4}{3}\bigr)^2}\phantom{x^2-\tfrac{8}{3}x+\tfrac{16}{9}}{}+1 &= \tfrac{34}{9}\,\mbox{,}\\ \rlap{\bigl(x-\tfrac{4}{3}\bigr)^2}\phantom{x^2-\tfrac{8}{3}x+\tfrac{16}{9}+1} &= \tfrac{25}{9}\,\mbox{.}\end{align*}

Now it's easy to get to \displaystyle x-\tfrac{4}{3}=\pm\tfrac{5}{3} and thus to get that \displaystyle x=\tfrac{4}{3}\pm\tfrac{5}{3}, i.e. \displaystyle x=-\tfrac{1}{3} or \displaystyle x=3.

Example 12


Solve the equation \displaystyle \ x^2+px+q=0\,.


Completing the square gives

\displaystyle \begin{align*} x^2+px+\Bigl(\frac{p}{2}\Bigr)^2+q &= \Bigl(\frac{p}{2}\Bigr)^2\,\mbox{,}\\ \rlap{\Bigl(x+\frac{p}{2}\Bigr)^2}\phantom{x^2+px+\Bigl(\frac{p}{2}\Bigr)^2+q}{} &= \Bigl(\frac{p}{2}\Bigr)^2-q\,\mbox{,}\\ \rlap{x+\frac{p}{2}}\phantom{x^2+px+\Bigl(\frac{p}{2}\Bigr)^2+q}{} &= \pm \sqrt{\Bigl(\frac{p}{2}\Bigr)^2-q}\ \mbox{.}\end{align*}

This gives the usual formula, pq-formula, for solutions to quadratic equations

\displaystyle x=-\frac{p}{2}\pm \sqrt{\Bigl(\frac{p}{2}\Bigr)^2-q}\,\mbox{.}

Example 13


Solve the equation \displaystyle \ z^2-(12+4i)z-4+24i=0\,.


Half the coefficient of \displaystyle z is \displaystyle -(6+2i) so we add the square of this expression to both sides


\displaystyle z^2-(12+4i)z+(-(6+2i))^2-4+24i=(-(6+2i))^2\,\mbox{.}

Expanding the square on the right-hand side \displaystyle \ (-(6+2i))^2=36+24i+4i^2=32+24i\ and completing the square on the left-hand side gives

\displaystyle \begin{align*} (z-(6+2i))^2-4+24i &= 32+24i\,\mbox{,}\\ \rlap{(z-(6+2i))^2}\phantom{(z-(6+2i))^2-4+24i}{} &= 36\,\mbox{.}\end{align*}

After a taking roots, we have that \displaystyle \ z-(6+2i)=\pm 6\ and therefore the solutions are \displaystyle z=12+2i and \displaystyle z=2i.

If one wants to bring about a square in an expression one can use the same technique. In order not to change the value of the expression one both adds and subtracts the missing constant term, such as in the following,

\displaystyle \begin{align*} x^2+10x+3 &= x^2+10x+25+3-25\\ &= (x+5)^2-22\,\mbox{.}\end{align*}


Example 14


Complete the square in the expression \displaystyle \ z^2+(2-4i)z+1-3i\,.


Add and subtract the term \displaystyle \bigl(\frac{1}{2}(2-4i)\bigr)^2=(1-2i)^2=-3-4i\,,

\displaystyle \begin{align*} z^2+(2-4i)z+1-3i &= z^2+(2-4i)z+(1-2i)^2-(1-2i)^2+1-3i\\ &= \bigl(z+(1-2i)\bigr)^2-(1-2i)^2+1-3i\\ &= \bigl(z+(1-2i)\bigr)^2-(-3-4i)+1-3i\\ &= \bigl(z+(1-2i)\bigr)^2+4+i\,\mbox{.}\end{align*}


Solving using a formula

To solve quadratic equations sometimes the simplest method is to use the usual formula for quadratic equations. However, this may lead to that one ends up with terms of the type \displaystyle \sqrt{a+ib}. One can then assume

\displaystyle z=x+iy=\sqrt{a+ib}\,\mbox{.}

By squaring both sides we get

\displaystyle \begin{align*} (x+iy)^2 &= a+ib\,\mbox{,}\\ x^2 - y^2 + 2xy\,i &= a+ib\,\mbox{.}\end{align*}

Matching the real and imaginary parts gives

\displaystyle \left\{\begin{align*} &x^2 - y^2 = a\,\mbox{,}\\ &2xy=b\,\mbox{.}\end{align*}\right.

These equations can be solved by substitution, for example, \displaystyle y= b/(2x) can be inserted in the first equation.


Example 15


Calculate \displaystyle \ \sqrt{-3-4i}\,.


Put \displaystyle \ x+iy=\sqrt{-3-4i}\ where \displaystyle x and \displaystyle y are real numbers. Squaring both sides gives

\displaystyle \begin{align*} (x+iy)^2 &= -3-4i\,\mbox{,}\\ x^2 - y^2 + 2xyi &= -3-4i\,\mbox{,}\end{align*}

which leads to the system of equations

\displaystyle \Bigl\{\begin{align*} x^2 - y^2 &= -3\,\mbox{,}\\ 2xy&= -4\,\mbox{.}\end{align*}

From the second equation, we can solve for \displaystyle \ y=-4/(2x) = -2/x\ and put it into the first equation to get

\displaystyle x^2-\frac{4}{x^2} = -3 \quad \Leftrightarrow \quad x^4 +3x^2 - 4=0\,\mbox{.}

This is a quadratic equation in \displaystyle x^2 which can be seen more easily by putting \displaystyle t=x^2,

\displaystyle t^2 +3t -4=0\,\mbox{.}

The solutions are \displaystyle t = 1 and \displaystyle t = -4. The latter solution must be rejected, as \displaystyle x and \displaystyle y have been assumed to be real numbers, and thus \displaystyle x^2=-4 cannot be true. We get \displaystyle x=\pm\sqrt{1}, which gives us two possible solutions

  • \displaystyle \ x=-1\ which gives \displaystyle \ y=-2/(-1)=2\,,
  • \displaystyle \ x=1\ which gives \displaystyle \ y=-2/1=-2\,.

So we can conclude that

\displaystyle \sqrt{-3-4i} = \biggl\{\begin{align*} &\phantom{-}1-2i\,\mbox{,}\\ &-1+2i\,\mbox{.}\end{align*}

Example 16


  1. Solve the equation \displaystyle \ z^2-2z+10=0\,.

    The formula for solutions to a quadratic equations (see example 3) gives that
    \displaystyle z= 1\pm \sqrt{1-10} = 1\pm \sqrt{-9}= 1\pm 3i\,\mbox{.}
  2. Solve the equation \displaystyle \ z^2 + (4-2i)z -4i=0\,\mbox{.}

    Here, once again , the pq-formula may be used giving the solutions directly
    \displaystyle \begin{align*} z &= -2+i\pm\sqrt{\smash{(-2+i)^2+4i}\vphantom{i^2}} = -2+i\pm\sqrt{4-4i+i^{\,2}+4i}\\ &=-2+i\pm\sqrt{3} = -2\pm\sqrt{3}+i\,\mbox{.}\end{align*}
  3. Solve the equation \displaystyle \ iz^2+(2+6i)z+2+11i=0\,\mbox{.}

    Division of both sides with \displaystyle i gives
    \displaystyle \begin{align*} z^2 + \frac{2+6i}{i}z +\frac{2+11i}{i} &= 0\,\mbox{,}\\ z^2+ (6-2i)z + 11-2i &= 0\,\mbox{.}\end{align*}

    Applying the pq- formula gives

    \displaystyle \begin{align*} z &= -3+i \pm \sqrt{\smash{(-3+i)^2 -(11-2i)}\vphantom{i^2}}\\ &= -3+i \pm \sqrt{-3-4i}\\ &= -3+i\pm(1-2i)\end{align*}

    where we used the resulting value of\displaystyle \ \sqrt{-3-4i}\ which we obtained in example 15. The solutions are therefore

    \displaystyle z=\biggl\{\begin{align*} &-2-i\,\mbox{,}\\ &-4+3i\,\mbox{.}\end{align*}