1.2 Exercises
From Förberedande kurs i matematik 2
(Difference between revisions)
m (Robot: Automated text replacement (-{{Vald flik +{{Selected tab)) |
|||
(12 intermediate revisions not shown.) | |||
Line 2: | Line 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #000" width="5px" | | | style="border-bottom:1px solid #000" width="5px" | | ||
- | {{ | + | {{Not selected tab|[[1.2 Rules of differentiation|Theory]]}} |
- | {{ | + | {{Selected tab|[[1.2 Exercises|Examples]]}} |
| style="border-bottom:1px solid #000" width="100%"| | | style="border-bottom:1px solid #000" width="100%"| | ||
|} | |} | ||
- | === | + | ===Example 1.2:1=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Calculate the derivative of the following functions and write the answer in simplest possible form: | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Line 25: | Line 25: | ||
|width="33%"| <math>\displaystyle\frac{x \ln x}{\sin x}</math> | |width="33%"| <math>\displaystyle\frac{x \ln x}{\sin x}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 1.2:1|Solution a|Solution 1.2:1a|Solution b|Solution 1.2:1b|Solution c|Solution 1.2:1c|Solution d|Solution 1.2:1d|Solution e|Solution 1.2:1e|Solution f|Solution 1.2:1f}} |
- | === | + | ===Example 1.2:2=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Calculate the derivative of the following functions and write the answer in simplest possible form: | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Line 45: | Line 45: | ||
|width="33%"| <math>\cos \sqrt{1-x}</math> | |width="33%"| <math>\cos \sqrt{1-x}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 1.2:2|Solution a|Solution 1.2:2a|Solution b|Solution 1.2:2b|Solution c|Solution 1.2:2c|Solution d|Solution 1.2:2d|Solution e|Solution 1.2:2e|Solution f|Solution 1.2:2f}} |
- | === | + | ===Example 1.2:3=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Calculate the derivative of the following functions and write the answer in simplest possible form: | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
- | |width="33%"| <math> \ln (\sqrt{x} + \sqrt{x+1})</math> | + | |width="33%"| <math> \ln (\sqrt{x} + \sqrt{x+1}\,)</math> |
|b) | |b) | ||
|width="33%"| <math>\sqrt{\displaystyle \frac{x+1}{x-1}}</math> | |width="33%"| <math>\sqrt{\displaystyle \frac{x+1}{x-1}}</math> | ||
Line 65: | Line 65: | ||
|width="33%"| <math>x^{\tan x}</math> | |width="33%"| <math>x^{\tan x}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 1.2:3|Solution a|Solution 1.2:3a|Solution b|Solution 1.2:3b|Solution c|Solution 1.2:3c|Solution d|Solution 1.2:3d|Solution e|Solution 1.2:3e|Solution f|Solution 1.2:3f}} |
+ | |||
+ | ===Example 1.2:4=== | ||
+ | <div class="ovning"> | ||
+ | Calculate the second derivative of the following functions and write the answer in simplest possible form: | ||
+ | {| width="100%" cellspacing="10px" | ||
+ | |a) | ||
+ | |width="50%"| <math>\displaystyle\frac{x}{\sqrt{1-x^2}}</math> | ||
+ | |b) | ||
+ | |width="50%"| <math>x ( \sin \ln x +\cos \ln x )</math> | ||
+ | |} | ||
+ | </div>{{#NAVCONTENT:Answer|Answer 1.2:4|Solution a|Solution 1.2:4a|Solution b|Solution 1.2:4b}} |
Current revision
Theory | Examples |
Example 1.2:1
Calculate the derivative of the following functions and write the answer in simplest possible form:
a) | \displaystyle \cos x \cdot \sin x | b) | \displaystyle x^2\ln x | c) | \displaystyle \displaystyle\frac{x^2+1}{x+1} |
d) | \displaystyle \displaystyle\frac{\sin x}{x} | e) | \displaystyle \displaystyle\frac{x}{\ln x} | f) | \displaystyle \displaystyle\frac{x \ln x}{\sin x} |
Answer
Solution a
Solution b
Solution c
Solution d
Solution e
Solution f
Example 1.2:2
Calculate the derivative of the following functions and write the answer in simplest possible form:
a) | \displaystyle \sin x^2 | b) | \displaystyle e^{x^2+x} | c) | \displaystyle \sqrt{\cos x} |
d) | \displaystyle \ln \ln x | e) | \displaystyle x(2x+1)^4 | f) | \displaystyle \cos \sqrt{1-x} |
Answer
Solution a
Solution b
Solution c
Solution d
Solution e
Solution f
Example 1.2:3
Calculate the derivative of the following functions and write the answer in simplest possible form:
a) | \displaystyle \ln (\sqrt{x} + \sqrt{x+1}\,) | b) | \displaystyle \sqrt{\displaystyle \frac{x+1}{x-1}} | c) | \displaystyle \displaystyle\frac{1}{x\sqrt{1-x^2}} |
d) | \displaystyle \sin \cos \sin x | e) | \displaystyle e^{\sin x^2} | f) | \displaystyle x^{\tan x} |
Answer
Solution a
Solution b
Solution c
Solution d
Solution e
Solution f
Example 1.2:4
Calculate the second derivative of the following functions and write the answer in simplest possible form:
a) | \displaystyle \displaystyle\frac{x}{\sqrt{1-x^2}} | b) | \displaystyle x ( \sin \ln x +\cos \ln x ) |