Lösning 2.1:1c
Aus Förberedande kurs i matematik 1
(Unterschied zwischen Versionen)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_1_1c.gif </center> {{NAVCONTENT_STOP}}) |
|||
(Der Versionsvergleich bezieht 2 dazwischen liegende Versionen mit ein.) | |||
Zeile 1: | Zeile 1: | ||
{{NAVCONTENT_START}} | {{NAVCONTENT_START}} | ||
- | <center> [[Bild:2_1_1c.gif]] </center> | + | <!--center> [[Bild:2_1_1c.gif]] </center--> |
+ | The factor <math> -x^2 </math> can be written as <math>(-1)x^2 </math> and both factors can be multiplied into the bracket: | ||
+ | |||
+ | <math> | ||
+ | \qquad | ||
+ | \begin{align} | ||
+ | -x^2 (4-y^2) &= (-1)x^2(4-y^2) \\ | ||
+ | &= (-1)x^2 \cdot 4 - (-1)x^2 \cdot y^2 \\ | ||
+ | &= -4x^2 +x^2 y^2. | ||
+ | \end{align} | ||
+ | </math> | ||
+ | |||
+ | |||
{{NAVCONTENT_STOP}} | {{NAVCONTENT_STOP}} |
Aktuelle Version
The factor \displaystyle -x^2 can be written as \displaystyle (-1)x^2 and both factors can be multiplied into the bracket:
\displaystyle \qquad \begin{align} -x^2 (4-y^2) &= (-1)x^2(4-y^2) \\ &= (-1)x^2 \cdot 4 - (-1)x^2 \cdot y^2 \\ &= -4x^2 +x^2 y^2. \end{align}