4.2 Trigonometriska funktioner
Aus Förberedande kurs i matematik 1
(Ny sida: __NOTOC__ {{Info| '''Innehåll:''' *De trigonometriska funktionerna cosinus, sinus och tangens. }} {{Info| '''Lärandemål:''' Efter detta avsnitt ska du ha lärt dig att: *Känna till be...) |
K (small fixes) |
||
(Der Versionsvergleich bezieht 8 dazwischen liegende Versionen mit ein.) | |||
Zeile 1: | Zeile 1: | ||
__NOTOC__ | __NOTOC__ | ||
+ | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
+ | | style="border-bottom:1px solid #797979" width="5px" | | ||
+ | {{Vald flik|[[4.2 Trigonometriska funktioner|Theory]]}} | ||
+ | {{Ej vald flik|[[4.2 Övningar|Exercises]]}} | ||
+ | | style="border-bottom:1px solid #797979" width="100%"| | ||
+ | |} | ||
+ | |||
{{Info| | {{Info| | ||
- | ''' | + | '''Contents:''' |
- | * | + | *The trigonometric functions cosine, sine and tangent. |
}} | }} | ||
{{Info| | {{Info| | ||
- | ''' | + | '''Learning outcomes:''' |
- | + | After this section, you will have learned : | |
- | * | + | *The concepts of acute, obtuse and right angles. |
- | * | + | *The definition of cosine, sine and tangent in the unit circle. |
- | * | + | *The values of cosine, sine and tangent for the standard angles <math>0</math>, <math>\pi/6</math> , <math>\pi/4</math> , <math>\pi/3</math> and <math>\pi/2</math> by heart. |
- | * | + | *To determine the values of cosine, sine and tangent of arguments that can be reduced to a standard angle in a quadrant of the unit circle. |
- | * | + | * To sketch graphs of cosine, sine and tangent. |
- | * | + | *To solve trigonometric problems involving right-angled triangles. |
}} | }} | ||
- | == | + | == Trigonometry of right-angled triangles == |
- | + | In the right-angled triangle below the ratio between the opposite side <math>a</math> and the adjacent side <math>b</math> is called the tangent of the angle <math>u</math> and is written as <math>\tan u</math>. | |
<center> | <center> | ||
Zeile 26: | Zeile 33: | ||
| valign="center" | | | valign="center" | | ||
{{:4.2 - Figur - Rätvinklig triangel med vinkeln u och kateterna a och b}} | {{:4.2 - Figur - Rätvinklig triangel med vinkeln u och kateterna a och b}} | ||
+ | | width="30px" | | ||
| valign="center" | | | valign="center" | | ||
<math>\tan u = \displaystyle \frac{a}{b}</math> | <math>\tan u = \displaystyle \frac{a}{b}</math> | ||
Zeile 31: | Zeile 39: | ||
</center> | </center> | ||
- | + | The value of the ratio <math>\frac{a}{b}</math> is not dependent on the size of the triangle, but only on the angle <math>u</math>. For different values of the angle, you can get the equivalent value of the tangent either from a trigonometric table or by using a calculator (the relevent button is usually named tan). | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 1''' |
- | + | How high is the flagpole? | |
<center>{{:4.2 - Figur - Flaggstång}}</center> | <center>{{:4.2 - Figur - Flaggstång}}</center> | ||
- | + | The flagpole and its shadow form a rectangular triangle where the vertical side is unknown (marked with <math>x</math> below). | |
<center>{{:4.2 - Figur - Flaggstångstriangel}}</center> | <center>{{:4.2 - Figur - Flaggstångstriangel}}</center> | ||
- | + | From the definition of tangent, we have that | |
{{Fristående formel||<math>\tan 40^\circ = \frac{x}{5 \mbox{ m }}</math>}} | {{Fristående formel||<math>\tan 40^\circ = \frac{x}{5 \mbox{ m }}</math>}} | ||
- | + | and since <math>\tan 40^\circ \approx 0\textrm{.}84</math> we get | |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
- | x = 5\,\mbox{m} \cdot \tan 40^\circ \approx 5\,\mbox{m} \cdot 0{ | + | x = 5\,\mbox{m} \cdot \tan 40^\circ \approx 5\,\mbox{m} \cdot 0\textrm{.}84 |
- | = 4{ | + | = 4\textrm{.}2\,\mbox{m}\,\mbox{.}</math>}} |
</div> | </div> | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 2''' |
- | + | Determine the length of the side designated with the <math>x</math> in the figure. | |
<center>{{:4.2 - Figur - Dubbeltriangel}}</center> | <center>{{:4.2 - Figur - Dubbeltriangel}}</center> | ||
- | + | If we call the angle at the far left <math>u</math> there are two ways to construct an expression for <math>\tan u</math>. | |
- | {| | + | {| align="center" |
|- | |- | ||
| width="5%" | | | width="5%" | | ||
Zeile 73: | Zeile 81: | ||
|} | |} | ||
- | {| | + | {| align="center" |
|- | |- | ||
| width="5%" | | | width="5%" | | ||
Zeile 83: | Zeile 91: | ||
|} | |} | ||
- | + | Equality of the two expressions for <math>\tan u</math> gives | |
{{Fristående formel||<math>\frac{22}{40} = \frac{x}{60}</math>}} | {{Fristående formel||<math>\frac{22}{40} = \frac{x}{60}</math>}} | ||
- | + | which leads to <math>x=60 \cdot \displaystyle \frac{22}{40} = 33</math>. | |
</div> | </div> | ||
- | + | There are two other ratios in right-angled triangles that have special names, and one is <math>\cos u = b/c</math> ("cosine of <math>u</math>") and the other <math>\sin u = a/c</math> (" sine of <math>u</math>"). | |
+ | <center> | ||
{| | {| | ||
|- | |- | ||
| valign="center" | | | valign="center" | | ||
{{:4.2 - Figur - Rätvinklig triangel med vinkeln u och sidorna a, b och c}} | {{:4.2 - Figur - Rätvinklig triangel med vinkeln u och sidorna a, b och c}} | ||
- | | width=" | + | | width="30px" | |
| valign="center" | | | valign="center" | | ||
<math>\begin{align*} | <math>\begin{align*} | ||
Zeile 102: | Zeile 111: | ||
\end{align*}</math> | \end{align*}</math> | ||
|} | |} | ||
- | + | </center> | |
- | + | Like the tangent the ratios that define the cosine and sine do not depend on the size of the triangle, but only on the angle <math>u</math>. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 3''' |
{| width="100%" | {| width="100%" | ||
Zeile 114: | Zeile 123: | ||
<li></li> | <li></li> | ||
</ol> | </ol> | ||
+ | | width="5%" | | ||
|align="left" valign="top"| | |align="left" valign="top"| | ||
{{:4.2 - Figur - Rätvinklig triangel med vinkeln u och sidor 3, 4 och 5}} | {{:4.2 - Figur - Rätvinklig triangel med vinkeln u och sidor 3, 4 och 5}} | ||
- | |width=" | + | | width="10%" | |
- | + | | width="85%" align="left" valign="top" | | |
+ | In the triangle on the left | ||
{{Fristående formel||<math>\begin{align*} | {{Fristående formel||<math>\begin{align*} | ||
\cos u &= \tfrac{4}{5}\\[6pt] | \cos u &= \tfrac{4}{5}\\[6pt] | ||
\sin u &= \tfrac{3}{5} | \sin u &= \tfrac{3}{5} | ||
\end{align*}</math>}} | \end{align*}</math>}} | ||
+ | |- | ||
+ | | height="10px" | | ||
|- | |- | ||
|valign="top"| | |valign="top"| | ||
Zeile 127: | Zeile 140: | ||
<li></li> | <li></li> | ||
</ol> | </ol> | ||
+ | | width="5%" | | ||
|align="left" valign="top"| | |align="left" valign="top"| | ||
{{:4.2 - Figur - Rätvinklig triangel med vinkeln 38° och sidor x och 5}} | {{:4.2 - Figur - Rätvinklig triangel med vinkeln 38° och sidor x och 5}} | ||
- | |width=" | + | | width="10%" | |
- | + | | width="85%" align="left" valign="top" | | |
+ | The definition of sine gives that | ||
{{Fristående formel||<math>\sin 38^\circ = \frac{x}{5}</math>}} | {{Fristående formel||<math>\sin 38^\circ = \frac{x}{5}</math>}} | ||
- | + | and if we know that <math>\sin 38^\circ \approx 0\textrm{.}616</math> then we get | |
- | {{Fristående formel||<math>x = 5 \cdot \sin 38^\circ \approx 5 \cdot 0{ | + | {{Fristående formel||<math>x = 5 \cdot \sin 38^\circ \approx 5 \cdot 0\textrm{.}616 \approx 3\textrm{.}1\,\mbox{.}</math>}} |
+ | |- | ||
+ | | height="10px" | | ||
|- | |- | ||
|valign="top"| | |valign="top"| | ||
Zeile 139: | Zeile 156: | ||
<li></li> | <li></li> | ||
</ol> | </ol> | ||
+ | | width="5%" | | ||
|align="left" valign="top"| | |align="left" valign="top"| | ||
{{:4.2 - Figur - Rätvinklig triangel med vinkeln 34° och sidor 3 och x}} | {{:4.2 - Figur - Rätvinklig triangel med vinkeln 34° och sidor 3 och x}} | ||
- | |width=" | + | | width="10%" | |
- | + | | width="85%" align="left" valign="top" | | |
+ | Cosine is the ratio between the adjacent side and the hypotenuse | ||
{{Fristående formel||<math>\cos 34^\circ = \frac{3}{x}\,\mbox{.}</math>}} | {{Fristående formel||<math>\cos 34^\circ = \frac{3}{x}\,\mbox{.}</math>}} | ||
- | + | Thus | |
{{Fristående formel||<math>x=\frac{3}{\cos 34^\circ}\,\mbox{.}</math>}} | {{Fristående formel||<math>x=\frac{3}{\cos 34^\circ}\,\mbox{.}</math>}} | ||
|} | |} | ||
Zeile 150: | Zeile 169: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 4''' |
- | + | Determine <math>\sin u</math> in the triangle | |
<center>{{:4.2 - Figur - Rätvinklig triangel med vinkel u och sidor ½ och 1}}</center> | <center>{{:4.2 - Figur - Rätvinklig triangel med vinkel u och sidor ½ och 1}}</center> | ||
- | + | With the help of the Pythagorean theorem the side on the right can be determined | |
+ | <center> | ||
{| | {| | ||
|- | |- | ||
| valign="center" | | | valign="center" | | ||
{{:4.2 - Figur - Rätvinklig triangel med vinkel u och sidor ½, x och 1}} | {{:4.2 - Figur - Rätvinklig triangel med vinkel u och sidor ½, x och 1}} | ||
- | | width=" | + | | width="30px" | |
| align="left" valign="center" | | | align="left" valign="center" | | ||
<math>1^2= \bigl( \tfrac{1}{2} \bigr)^2 + x^2 \quad\Leftrightarrow\quad x = \frac{\sqrt{3}}{2}</math> | <math>1^2= \bigl( \tfrac{1}{2} \bigr)^2 + x^2 \quad\Leftrightarrow\quad x = \frac{\sqrt{3}}{2}</math> | ||
|} | |} | ||
+ | </center> | ||
- | + | and thus <math>\sin u = \frac{\sqrt{3}/2}{1} = \frac{\sqrt{3}}{2}</math>. | |
</div> | </div> | ||
- | == | + | == Some standard angles == |
- | + | For some angles namely 30°, 45° and 60° it is relatively easy to calculate the exact values of the trigonometric functions. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 5''' |
+ | |||
+ | We start with a square having sides of length 1. A diagonal of the square divides the right angles in opposite corners into two equal parts of 45°. | ||
- | Vi utgår från en kvadrat med sidlängd 1. En diagonal i kvadraten delar de räta vinklarna i motsatta hörn i två lika delar 45°. | ||
<center>{{:4.2 - Figur - Två enhetskvadrater}}</center> | <center>{{:4.2 - Figur - Två enhetskvadrater}}</center> | ||
- | + | ||
+ | Using the Pythagorean theorem, we can determine the length <math>x</math> of the diagonal, | ||
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
x^2 = 1^2 + 1^2 | x^2 = 1^2 + 1^2 | ||
Zeile 188: | Zeile 211: | ||
x = \sqrt{1^2 + 1^2} = \sqrt{2}\,\mbox{.}</math>}} | x = \sqrt{1^2 + 1^2} = \sqrt{2}\,\mbox{.}</math>}} | ||
- | + | Each triangle has the diagonal as the hypotenuse, thus we can obtain the value of the trigonometric functions for the angle <math>45^\circ</math>. | |
+ | |||
+ | <center> | ||
{| | {| | ||
|- | |- | ||
| valign="center" | | | valign="center" | | ||
{{:4.2 - Figur - Enhetskvadrat vars halva är en rätvinklig triangel}} | {{:4.2 - Figur - Enhetskvadrat vars halva är en rätvinklig triangel}} | ||
- | | width=" | + | | width="30px" | |
| align="left" valign="center" | | | align="left" valign="center" | | ||
<math>\begin{align*} | <math>\begin{align*} | ||
Zeile 202: | Zeile 227: | ||
\end{align*}</math> | \end{align*}</math> | ||
|} | |} | ||
+ | </center> | ||
+ | |||
</div> | </div> | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 6''' |
+ | |||
+ | Imagine an equilateral triangle where all sides have length 1. The angles of the triangle are all 60°. The triangle can be divided into two halves by a line that divides the angle at the top in equal parts. | ||
- | Betrakta en liksidig triangel där alla sidor har längd 1. Vinklarna i triangeln är alla 60°. Triangeln kan delas upp i två halvor av linjen som delar toppvinkeln mitt itu. | ||
<center>{{:4.2 - Figur - Två liksidiga trianglar}}</center> | <center>{{:4.2 - Figur - Två liksidiga trianglar}}</center> | ||
- | Pythagoras sats ger att den vertikala sidan av en triangelhalva är <math>x=\sqrt{3}/2</math>. Från en triangelhalva får vi att | ||
+ | The Pythagorean theorem shows that the vertical side of either half-triangle is <math>x=\sqrt{3}/2</math>. From one of these half-triangles we get that | ||
+ | |||
+ | |||
+ | <center> | ||
{| | {| | ||
|- | |- | ||
Zeile 231: | Zeile 262: | ||
\end{align*}</math> | \end{align*}</math> | ||
|} | |} | ||
+ | </center> | ||
+ | |||
</div> | </div> | ||
- | == | + | == Trigonometric functions for general angles == |
- | + | For angles of less than 0° or greater than 90° the trigonometric functions are defined using the unit circle (that is the circle that has its centre at the origin and has a radius 1). | |
<div class="regel"> | <div class="regel"> | ||
{| width="100%" | {| width="100%" | ||
|- | |- | ||
- | | width=" | + | | width="90%" valign="center"| |
- | + | The trigonometric functions <math>\cos u</math> and <math>\sin u</math> are ''x''- and ''y''- coordinates of the intersection between the unit circle and the radial line that forms the angle <math>u</math> with the positive ''x''-axis. | |
+ | | width="10%" | | ||
| align="right" valign="center" | | | align="right" valign="center" | | ||
{{:4.2 - Figur - Enhetscirkeln med vinkeln u och punkten (cos u, sin u)}} | {{:4.2 - Figur - Enhetscirkeln med vinkeln u och punkten (cos u, sin u)}} | ||
Zeile 248: | Zeile 282: | ||
</div> | </div> | ||
- | + | Tangent function is defined as | |
{{Fristående formel||<math>\tan u = \displaystyle\frac{\sin u}{\cos u}</math>}} | {{Fristående formel||<math>\tan u = \displaystyle\frac{\sin u}{\cos u}</math>}} | ||
- | + | and the value of the tangent can be interpreted as the slope for the radial line. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 7''' |
- | + | From the figures below, we obtain the values of cosine and sine. | |
{| width="100%" | {| width="100%" | ||
Zeile 266: | Zeile 300: | ||
<li></li> | <li></li> | ||
</ol> | </ol> | ||
- | |align=" | + | |align="right" valign="center"| |
{{:4.2 - Figur - Enhetscirkeln med vinkeln 104° och punkten (-0,24; 0,97)}} | {{:4.2 - Figur - Enhetscirkeln med vinkeln 104° och punkten (-0,24; 0,97)}} | ||
| width="10%" | | | width="10%" | | ||
Zeile 280: | Zeile 314: | ||
<li></li> | <li></li> | ||
</ol> | </ol> | ||
- | |align=" | + | |align="right" valign="center"| |
{{:4.2 - Figur - Enhetscirkeln med vinkeln 201° och punkten (-0,93; -0,36)}} | {{:4.2 - Figur - Enhetscirkeln med vinkeln 201° och punkten (-0,93; -0,36)}} | ||
| width="10%" | | | width="10%" | | ||
Zeile 293: | Zeile 327: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 8''' |
- | + | Which sign do the following have? | |
{| width="100%" | {| width="100%" | ||
|- | |- | ||
- | |width=" | + | |width="95%"| |
<ol type="a"> | <ol type="a"> | ||
<li><math>\cos 209^\circ</math> | <li><math>\cos 209^\circ</math> | ||
<br> | <br> | ||
<br> | <br> | ||
- | + | Since the angle <math>209^\circ</math> can be written as <math>209^\circ = 180^\circ + 29^\circ</math> the angle corresponds to a point on the unit circle which lies in the third quadrant. The point has a negative ''x''-coordinate, which means that <math>\cos 209^\circ</math> is negative .</li> | |
</ol> | </ol> | ||
- | |align="right"| | + | | width="5%" | |
+ | | align="right" | | ||
{{:4.2 - Figur - Enhetscirkeln med vinkeln 209° och linjen x = cos 209°}} | {{:4.2 - Figur - Enhetscirkeln med vinkeln 209° och linjen x = cos 209°}} | ||
|- | |- | ||
- | |width=" | + | | width="95%" | |
<ol type="a" start="2"> | <ol type="a" start="2"> | ||
<li><math>\sin 133^\circ</math> | <li><math>\sin 133^\circ</math> | ||
<br> | <br> | ||
<br> | <br> | ||
- | + | The angle <math>133^\circ</math> is equal to <math>90^\circ + 43^\circ</math> and gives a point on the unit circle which lies in the second quadrant. The quadrant has points with positive ''y''-coordinate, and therefore <math>\sin 133^\circ</math> is positive.</li> | |
</ol> | </ol> | ||
- | |align="right"| | + | | width="5%" | |
+ | | align="right" | | ||
{{:4.2 - Figur - Enhetscirkeln med vinkeln 133° och linjen y = sin 133°}} | {{:4.2 - Figur - Enhetscirkeln med vinkeln 133° och linjen y = sin 133°}} | ||
|- | |- | ||
- | |width=" | + | | width="95%" | |
<ol type="a" start="3"> | <ol type="a" start="3"> | ||
<li><math>\tan (-40^\circ)</math> | <li><math>\tan (-40^\circ)</math> | ||
<br> | <br> | ||
<br> | <br> | ||
- | + | By drawing angle<math>-40^\circ</math> in the unit circle one obtains a radial line which has a negative slope, i.e. <math>\tan (-40^\circ)</math> is negative. </li> | |
</ol> | </ol> | ||
- | |align="right"| | + | | width="5%" | |
+ | | align="right" | | ||
{{:4.2 - Figur - Enhetscirkeln med vinkeln -40° och linjen med riktningskoefficient tan -40°}} | {{:4.2 - Figur - Enhetscirkeln med vinkeln -40° och linjen med riktningskoefficient tan -40°}} | ||
|} | |} | ||
Zeile 331: | Zeile 368: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 9''' |
- | + | Calculate <math>\,\sin\frac{2\pi}{3}</math>. | |
<br> | <br> | ||
<br> | <br> | ||
- | + | Rewriting | |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
\frac{2\pi}{3} = \frac{4\pi}{6} | \frac{2\pi}{3} = \frac{4\pi}{6} | ||
Zeile 342: | Zeile 379: | ||
= \frac{\pi}{2} + \frac{\pi}{6}</math>}} | = \frac{\pi}{2} + \frac{\pi}{6}</math>}} | ||
- | + | shows that the angle <math>2\pi/3</math> lands in the the second quadrant and makes the angle <math>\pi/6</math> with the positive ''y''-axis. If we draw an extra triangle as in the figure below on the right, we see that the <math>2\pi/3</math>- point on the unit circle has a ''y''-coordinate, which is equal to the adjacent side <math>\cos \frac{\pi}{6} = \sqrt{3}/2</math>. So we have that | |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
\sin\frac{2\pi}{3} = \frac{\sqrt{3}}{2}\,\mbox{.}</math>}} | \sin\frac{2\pi}{3} = \frac{\sqrt{3}}{2}\,\mbox{.}</math>}} | ||
Zeile 350: | Zeile 387: | ||
- | == | + | == The trigonometric functions graphs == |
+ | |||
+ | In the last section, we used a unit circle to define cosine and sine of arbitrary angles and we often will use the unit circle in the future, for example, to derive trigonometric relationships and solve trigonometric equations. However, there are certain characteristics of the trigonometric functions that are better illustrated by drawing their graphs. | ||
- | I förra avsnittet använde vi enhetscirkeln för att definiera cosinus och sinus för godtyckliga vinklar och vi kommer använda enhetscirkeln ofta framöver för att t.ex. härleda trigonometriska samband och lösa trigonometriska ekvationer. Det finns dock vissa egenskaper hos de trigonometriska funktionerna som bättre illustreras genom att rita upp deras funktionsgrafer. | ||
<center>{{:4.2 - Figur - Sinuskurva}}</center> | <center>{{:4.2 - Figur - Sinuskurva}}</center> | ||
- | <center><small> | + | <center><small>The graph of the sine function </small></center> |
<center>{{:4.2 - Figur - Cosinuskurva}}</center> | <center>{{:4.2 - Figur - Cosinuskurva}}</center> | ||
- | <center><small> | + | <center><small>The graph of the cosine function </small></center> |
<center>{{:4.2 - Figur - Tangenskurva}}</center> | <center>{{:4.2 - Figur - Tangenskurva}}</center> | ||
- | <center><small> | + | <center><small>The graph of the tangent function </small></center> |
- | I graferna kan vi observera flera saker kanske tydligare än i enhetscirkeln. Några exempel är | ||
- | + | In these graphs, we might observe several things more clearly than in the unit circle. Some examples are: | |
- | * | + | * The curves for cosine and sine repeat themselves after a change in angle of <math>2\pi</math>, that is the <math>\cos (x+2\pi) = \cos x</math> and <math>\sin (x+2\pi) = \sin x</math>. For the unit circle <math>2\pi</math> corresponds to a revolution, and after a complete revolution angles return to the same location on the unit circle and therefore have the same coordinates. |
- | * | + | *The curve for the tangent repeats itself after a change in angle of <math>\pi</math>, that is <math>\tan (x+\pi) = \tan x</math>. Two angles which differ by <math>\pi</math> share the same line through the origin of the unit circle and thus their radial lines have the same slope. |
+ | *Except for a phase shift of <math>\pi/2</math> the curves for cosine and sine are identical, that is <math>\cos x = \sin (x+ \pi/2)</math>; more about this in the next section. | ||
- | + | ||
+ | The curves can also be important when examining trigonometric equations. With a simple sketch, you can often get an idea of how many solutions an equation has, and where the solutions lie. | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 10''' |
- | + | How many solutions has the equation <math>\cos x = x^2</math> ( where <math>x</math> is measured in radians)? | |
<br> | <br> | ||
<br> | <br> | ||
- | + | By drawing the graphs <math>y=\cos x</math> and <math>y=x^2</math> we see that the curves intersect in two points. So there are two ''x''-values for which the corresponding ''y''-values are equal. In other words, the equation has two solutions. | |
<center>{{:4.2 - Figur - Kurvorna y = cos x och y = x²}}</center> | <center>{{:4.2 - Figur - Kurvorna y = cos x och y = x²}}</center> | ||
Zeile 386: | Zeile 425: | ||
- | [[4.2 Övningar| | + | [[4.2 Övningar|Exercises]] |
- | + | ||
- | + | ||
- | + | ||
- | ''' | + | <div class="inforuta" style="width:580px;"> |
+ | '''Study advice''' | ||
- | + | '''Basic and final tests''' | |
+ | After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge. | ||
- | '''Tänk på att:''' | ||
- | + | '''Keep in mind that: ''' | |
- | + | If you have studied trigonometry, then you should not be afraid to use it in geometric problems. It often produces a simpler solution. | |
- | + | You may need to spend a lot of time on understanding how to use a unit circle to define the trigonometric functions. | |
+ | Get into the habit of calculating with precise trigonometric values. It provides a good training in calculating fractions and eventually algebraic rational expressions. | ||
- | ''' | + | '''Reviews''' |
- | + | For those of you who want to deepen your studies or need more detailed explanations consider the following references | |
- | [http://dooku.miun.se/per.edstrom/interaktiv_matematik/trigonometri/cos_even.html | + | [http://dooku.miun.se/per.edstrom/interaktiv_matematik/trigonometri/cos_even.html Learn more about trigonometry in Per Edström "Interactive Mathematics"] |
- | [http://en.wikipedia.org/wiki/Trigonometric_function | + | [http://en.wikipedia.org/wiki/Trigonometric_function Learn more about trigonometry in the English Wikipedia] |
- | [http://en.wikipedia.org/wiki/Unit_circle | + | [http://en.wikipedia.org/wiki/Unit_circle Learn more about the unit circle in the English Wikipedia] |
- | ''' | + | '''Useful web sites''' |
- | [http://www.math.kth.se/online/images/sinus_och_cosinus_i_enhetscirkeln.swf | + | [http://www.math.kth.se/online/images/sinus_och_cosinus_i_enhetscirkeln.swf Experiment with the sine and cosine in the unit circle] |
- | [http://www.math.psu.edu/dlittle/java/geometry/euclidean/toolbox.html | + | [http://www.math.psu.edu/dlittle/java/geometry/euclidean/toolbox.html Experiment with Euclidean geometry] |
</div> | </div> |
Aktuelle Version
Theory | Exercises |
Contents:
- The trigonometric functions cosine, sine and tangent.
Learning outcomes:
After this section, you will have learned :
- The concepts of acute, obtuse and right angles.
- The definition of cosine, sine and tangent in the unit circle.
- The values of cosine, sine and tangent for the standard angles \displaystyle 0, \displaystyle \pi/6 , \displaystyle \pi/4 , \displaystyle \pi/3 and \displaystyle \pi/2 by heart.
- To determine the values of cosine, sine and tangent of arguments that can be reduced to a standard angle in a quadrant of the unit circle.
- To sketch graphs of cosine, sine and tangent.
- To solve trigonometric problems involving right-angled triangles.
Trigonometry of right-angled triangles
In the right-angled triangle below the ratio between the opposite side \displaystyle a and the adjacent side \displaystyle b is called the tangent of the angle \displaystyle u and is written as \displaystyle \tan u.
|
\displaystyle \tan u = \displaystyle \frac{a}{b} |
The value of the ratio \displaystyle \frac{a}{b} is not dependent on the size of the triangle, but only on the angle \displaystyle u. For different values of the angle, you can get the equivalent value of the tangent either from a trigonometric table or by using a calculator (the relevent button is usually named tan).
Example 1
How high is the flagpole?
The flagpole and its shadow form a rectangular triangle where the vertical side is unknown (marked with \displaystyle x below).
From the definition of tangent, we have that
\displaystyle \tan 40^\circ = \frac{x}{5 \mbox{ m }} |
and since \displaystyle \tan 40^\circ \approx 0\textrm{.}84 we get
\displaystyle
x = 5\,\mbox{m} \cdot \tan 40^\circ \approx 5\,\mbox{m} \cdot 0\textrm{.}84 = 4\textrm{.}2\,\mbox{m}\,\mbox{.} |
Example 2
Determine the length of the side designated with the \displaystyle x in the figure.
If we call the angle at the far left \displaystyle u there are two ways to construct an expression for \displaystyle \tan u.
|
\displaystyle \tan u = \displaystyle \frac{22}{40} |
|
\displaystyle \tan u = \dfrac{x}{60} |
Equality of the two expressions for \displaystyle \tan u gives
\displaystyle \frac{22}{40} = \frac{x}{60} |
which leads to \displaystyle x=60 \cdot \displaystyle \frac{22}{40} = 33.
There are two other ratios in right-angled triangles that have special names, and one is \displaystyle \cos u = b/c ("cosine of \displaystyle u") and the other \displaystyle \sin u = a/c (" sine of \displaystyle u").
|
\displaystyle \begin{align*} \cos u &= \frac{b}{c}\\[8pt] \sin u &= \frac{a}{c} \end{align*} |
Like the tangent the ratios that define the cosine and sine do not depend on the size of the triangle, but only on the angle \displaystyle u.
Example 3
|
|
In the triangle on the left
| ||||||||
|
|
The definition of sine gives that
and if we know that \displaystyle \sin 38^\circ \approx 0\textrm{.}616 then we get
| ||||||||
|
|
Cosine is the ratio between the adjacent side and the hypotenuse
Thus
|
Example 4
Determine \displaystyle \sin u in the triangle
With the help of the Pythagorean theorem the side on the right can be determined
|
\displaystyle 1^2= \bigl( \tfrac{1}{2} \bigr)^2 + x^2 \quad\Leftrightarrow\quad x = \frac{\sqrt{3}}{2} |
and thus \displaystyle \sin u = \frac{\sqrt{3}/2}{1} = \frac{\sqrt{3}}{2}.
Some standard angles
For some angles namely 30°, 45° and 60° it is relatively easy to calculate the exact values of the trigonometric functions.
Example 5
We start with a square having sides of length 1. A diagonal of the square divides the right angles in opposite corners into two equal parts of 45°.
Using the Pythagorean theorem, we can determine the length \displaystyle x of the diagonal,
\displaystyle
x^2 = 1^2 + 1^2 \quad \Leftrightarrow \quad x = \sqrt{1^2 + 1^2} = \sqrt{2}\,\mbox{.} |
Each triangle has the diagonal as the hypotenuse, thus we can obtain the value of the trigonometric functions for the angle \displaystyle 45^\circ.
|
\displaystyle \begin{align*} \cos 45^\circ &= \frac{1}{\sqrt{2}}\\[8pt] \sin 45^\circ &= \frac{1}{\sqrt{2}}\\[8pt] \tan 45^\circ &= \frac{1}{1}= 1\\ \end{align*} |
Example 6
Imagine an equilateral triangle where all sides have length 1. The angles of the triangle are all 60°. The triangle can be divided into two halves by a line that divides the angle at the top in equal parts.
The Pythagorean theorem shows that the vertical side of either half-triangle is \displaystyle x=\sqrt{3}/2. From one of these half-triangles we get that
|
\displaystyle \begin{align*} \cos 30^\circ &= \frac{\sqrt{3}/2}{1} = \frac{\sqrt{3}}{2}\,;\\[8pt] \sin 30^\circ &= \frac{1/2}{1} = \frac{1}{2}\,;\\[8pt] \tan 30^\circ &= \frac{1/2}{\sqrt{3}/2} = \frac{1}{\sqrt{3}}\,;\\ \end{align*} \qquad\quad \begin{align*} \cos 60^\circ &= \frac{1/2}{1} = \frac{1}{2}\\[8pt] \sin 60^\circ &= \frac{\sqrt{3}/2}{1} = \frac{\sqrt{3}}{2}\\[8pt] \tan 60^\circ &= \frac{\sqrt{3}/2}{1/2}=\sqrt{3}\\ \end{align*} |
Trigonometric functions for general angles
For angles of less than 0° or greater than 90° the trigonometric functions are defined using the unit circle (that is the circle that has its centre at the origin and has a radius 1).
The trigonometric functions \displaystyle \cos u and \displaystyle \sin u are x- and y- coordinates of the intersection between the unit circle and the radial line that forms the angle \displaystyle u with the positive x-axis. |
|
Tangent function is defined as
\displaystyle \tan u = \displaystyle\frac{\sin u}{\cos u} |
and the value of the tangent can be interpreted as the slope for the radial line.
Example 7
From the figures below, we obtain the values of cosine and sine.
|
|
\displaystyle \begin{align*} \cos 104^\circ &\approx -0{,}24\\[8pt] \sin 104^\circ &\approx 0{,}97\\[8pt] \tan 104^\circ &\approx \dfrac{0{,}97}{-0{,}24} \approx -4{,}0\\ \end{align*} | |
|
|
\displaystyle \begin{align*} \cos 201^\circ &\approx -0{,}93\\[8pt] \sin 201^\circ &\approx -0{,}36\\[8pt] \tan 201^\circ &\approx \dfrac{-0{,}36}{-0{,}93} \approx 0{,}4\\ \end{align*} |
Example 8
Which sign do the following have?
|
| |
|
| |
|
|
Example 9
Calculate \displaystyle \,\sin\frac{2\pi}{3}.
Rewriting
\displaystyle
\frac{2\pi}{3} = \frac{4\pi}{6} = \frac{3\pi+ \pi}{6} = \frac{\pi}{2} + \frac{\pi}{6} |
shows that the angle \displaystyle 2\pi/3 lands in the the second quadrant and makes the angle \displaystyle \pi/6 with the positive y-axis. If we draw an extra triangle as in the figure below on the right, we see that the \displaystyle 2\pi/3- point on the unit circle has a y-coordinate, which is equal to the adjacent side \displaystyle \cos \frac{\pi}{6} = \sqrt{3}/2. So we have that
\displaystyle
\sin\frac{2\pi}{3} = \frac{\sqrt{3}}{2}\,\mbox{.} |
The trigonometric functions graphs
In the last section, we used a unit circle to define cosine and sine of arbitrary angles and we often will use the unit circle in the future, for example, to derive trigonometric relationships and solve trigonometric equations. However, there are certain characteristics of the trigonometric functions that are better illustrated by drawing their graphs.
In these graphs, we might observe several things more clearly than in the unit circle. Some examples are:
- The curves for cosine and sine repeat themselves after a change in angle of \displaystyle 2\pi, that is the \displaystyle \cos (x+2\pi) = \cos x and \displaystyle \sin (x+2\pi) = \sin x. For the unit circle \displaystyle 2\pi corresponds to a revolution, and after a complete revolution angles return to the same location on the unit circle and therefore have the same coordinates.
- The curve for the tangent repeats itself after a change in angle of \displaystyle \pi, that is \displaystyle \tan (x+\pi) = \tan x. Two angles which differ by \displaystyle \pi share the same line through the origin of the unit circle and thus their radial lines have the same slope.
- Except for a phase shift of \displaystyle \pi/2 the curves for cosine and sine are identical, that is \displaystyle \cos x = \sin (x+ \pi/2); more about this in the next section.
The curves can also be important when examining trigonometric equations. With a simple sketch, you can often get an idea of how many solutions an equation has, and where the solutions lie.
Example 10
How many solutions has the equation \displaystyle \cos x = x^2 ( where \displaystyle x is measured in radians)?
By drawing the graphs \displaystyle y=\cos x and \displaystyle y=x^2 we see that the curves intersect in two points. So there are two x-values for which the corresponding y-values are equal. In other words, the equation has two solutions.
Study advice
Basic and final tests
After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.
Keep in mind that:
If you have studied trigonometry, then you should not be afraid to use it in geometric problems. It often produces a simpler solution.
You may need to spend a lot of time on understanding how to use a unit circle to define the trigonometric functions.
Get into the habit of calculating with precise trigonometric values. It provides a good training in calculating fractions and eventually algebraic rational expressions.
Reviews
For those of you who want to deepen your studies or need more detailed explanations consider the following references
Learn more about trigonometry in Per Edström "Interactive Mathematics"
Learn more about trigonometry in the English Wikipedia
Learn more about the unit circle in the English Wikipedia
Useful web sites