4.1 Vinklar och cirklar
Aus Förberedande kurs i matematik 1
K |
K |
||
(Der Versionsvergleich bezieht 6 dazwischen liegende Versionen mit ein.) | |||
Zeile 2: | Zeile 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #797979" width="5px" | | | style="border-bottom:1px solid #797979" width="5px" | | ||
- | {{ | + | {{Vald flik|[[4.1 Vinklar och cirklar|Theory]]}} |
- | {{ | + | {{Ej vald flik|[[4.1 Övningar|Exercises]]}} |
| style="border-bottom:1px solid #797979" width="100%"| | | style="border-bottom:1px solid #797979" width="100%"| | ||
|} | |} | ||
{{Info| | {{Info| | ||
- | ''' | + | '''Contents:''' |
- | * | + | *Various angle measures (degrees, radians and revolutions) |
- | * | + | *The Pythagorean theorem |
- | * | + | *Formula for distance in the plane |
- | * | + | * Equation of a circle |
}} | }} | ||
{{Info| | {{Info| | ||
- | ''' | + | '''Learning outcomes:''' |
- | + | After this section, you will have learned : | |
- | * | + | *To convert between degrees, radians and revolutions. |
- | * | + | *To calculate the area and circumference of sectors of a circle. |
- | * | + | *The concepts of right-angled triangles including its legs and hypotenuse. |
- | * | + | *To formulate and use the Pythagorean theorem. |
- | * | + | *To calculate the distance between two points in the plane. |
- | * | + | *To sketch circles by completing the square in their equations. |
- | * | + | *The concepts of unit circle, tangent, radius, diameter, circumference, chord and arc. |
- | * | + | *To solve geometric problems that contain circles. |
}} | }} | ||
- | == | + | == Angle measures == |
- | + | There are several different units for measuring angles, which are used in different contexts. The two most common within mathematics are degrees and radians. | |
- | *''' | + | *'''Degrees.''' If a complete revolution is divided into 360 parts, then each part is called 1 degree. Degrees are designated by <math>{}^\circ</math>. |
[[Bild:Gradskiva - 57°.gif||center]] | [[Bild:Gradskiva - 57°.gif||center]] | ||
- | *''' | + | *'''Radians.''' Another way to measure an angle, is to use the length of the arc which subtends the angle in relation to the radius as a measure of the angle. This unit is called radian. A revolution is <math>2\pi</math> radians as the circumference of a circle is <math>2\pi r</math>, where <math>r</math> is the radius of the circle. |
[[Bild:Gradskiva - Radianer.gif||center]] | [[Bild:Gradskiva - Radianer.gif||center]] | ||
- | + | A complete revolution is <math>360^\circ</math> or <math>2\pi</math> radians which means | |
{{Fristående formel||<math>\begin{align*} | {{Fristående formel||<math>\begin{align*} | ||
- | &1^\circ = \frac{1}{360} \cdot 2\pi\ \mbox{ | + | &1^\circ = \frac{1}{360} \cdot 2\pi\ \mbox{ radians } |
- | = \frac{\pi}{180}\ \mbox{ | + | = \frac{\pi}{180}\ \mbox{ radians,}\\ |
&1\ \mbox{ radian } = \frac{1}{2\pi} \cdot 360^\circ | &1\ \mbox{ radian } = \frac{1}{2\pi} \cdot 360^\circ | ||
= \frac{180^\circ}{\pi}\,\mbox{.} | = \frac{180^\circ}{\pi}\,\mbox{.} | ||
\end{align*}</math>}} | \end{align*}</math>}} | ||
- | + | These conversion relations can be used to convert between degrees and radians. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 1''' |
<ol type="a"> | <ol type="a"> | ||
<li><math>30^\circ = 30 \cdot 1^\circ | <li><math>30^\circ = 30 \cdot 1^\circ | ||
- | = 30 \cdot \frac{\pi}{180}\ \mbox{ | + | = 30 \cdot \frac{\pi}{180}\ \mbox{ radians } |
- | = \frac{\pi}{6}\ \mbox{ | + | = \frac{\pi}{6}\ \mbox{ radians }</math></li> |
- | <li><math>\frac{\pi}{8}\ \mbox { | + | <li><math>\frac{\pi}{8}\ \mbox { radians } |
- | = \frac{\pi}{8} \cdot (1 \; \mbox{ | + | = \frac{\pi}{8} \cdot (1 \; \mbox{radians}\,) |
= \frac{\pi}{8} \cdot \frac{180^\circ}{\pi} | = \frac{\pi}{8} \cdot \frac{180^\circ}{\pi} | ||
= 22{,}5^\circ</math></li> | = 22{,}5^\circ</math></li> | ||
Zeile 66: | Zeile 66: | ||
</div> | </div> | ||
- | + | In some contexts, it may be useful to talk about negative angles and angles greater than 360°. This means that the same direction can be designated by different angles that differ from each other by an integral number of revolutions. | |
<center>{{:4.1 - Figur - Vinklarna 45°, -315° och 405°}}</center> | <center>{{:4.1 - Figur - Vinklarna 45°, -315° och 405°}}</center> | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 2''' |
<ol type="a"> | <ol type="a"> | ||
- | <li> | + | <li> The angles <math>-55^\circ</math> and <math>665^\circ |
- | </math> | + | </math> indicate the same direction because |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
-55^\circ + 2 \cdot 360^\circ = 665^\circ\,\mbox{.}</math>}}</li> | -55^\circ + 2 \cdot 360^\circ = 665^\circ\,\mbox{.}</math>}}</li> | ||
- | <li> | + | <li> The angles <math>\frac{3\pi}{7}</math> and <math> |
- | -\frac{11\pi}{7}</math> | + | -\frac{11\pi}{7}</math> indicate the same direction because |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
\frac{3\pi}{7} - 2\pi = -\frac{11\pi}{7}\,\mbox{.}</math>}}</li> | \frac{3\pi}{7} - 2\pi = -\frac{11\pi}{7}\,\mbox{.}</math>}}</li> | ||
- | <li> | + | <li> The angles <math>36^\circ</math> and <math> |
- | 216^\circ</math> | + | 216^\circ</math> do not specify the same direction, but opposite directions since |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
36^\circ + 180^\circ = 216^\circ\,\mbox{.}</math>}}</li> | 36^\circ + 180^\circ = 216^\circ\,\mbox{.}</math>}}</li> | ||
Zeile 92: | Zeile 92: | ||
- | == | + | == Formula for distance in the plane == |
- | Pythagoras | + | The theorem of Pythagoras is one of the most famous theorems in mathematics and says that in a right-angled triangle with the legs <math>a</math> and <math>b</math>, and the hypotenuse <math>c</math> then |
<div class="regel"> | <div class="regel"> | ||
{|width="100%" | {|width="100%" | ||
- | |width="100%"|''' | + | |width="100%"|'''The Pythagorean theorem:''' |
{{Fristående formel||<math>c^2 = a^2 + b^2\,\mbox{.}</math>}} | {{Fristående formel||<math>c^2 = a^2 + b^2\,\mbox{.}</math>}} | ||
|align="right"|{{:4.1 - Figur - Pythagoras sats}} | |align="right"|{{:4.1 - Figur - Pythagoras sats}} | ||
Zeile 105: | Zeile 105: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 3''' |
{| width="100%" | {| width="100%" | ||
- | |width="100%"| | + | |width="100%"| The triangle on the right is |
{{Fristående formel||<math>c^2= 3^2 + 4^2 = 9 +16 = 25</math>}} | {{Fristående formel||<math>c^2= 3^2 + 4^2 = 9 +16 = 25</math>}} | ||
- | + | and therefore hypotenuse <math>c</math> is equal to | |
{{Fristående formel||<math>c=\sqrt{25} = 5\,\mbox{.}</math>}} | {{Fristående formel||<math>c=\sqrt{25} = 5\,\mbox{.}</math>}} | ||
|align="right"|{{:4.1 - Figur - Rätvinklig triangel med sidor 3, 4 och 5}} | |align="right"|{{:4.1 - Figur - Rätvinklig triangel med sidor 3, 4 och 5}} | ||
Zeile 116: | Zeile 116: | ||
</div> | </div> | ||
- | + | The Pythagorean theorem can be used to calculate the distance between two points in a coordinate system. | |
<div class="regel"> | <div class="regel"> | ||
- | ''' | + | '''Formula for distance:''' |
- | + | The distance <math>d</math> between two points with coordinates <math>(x,y)</math> and <math>(a,b)</math> is | |
{{Fristående formel||<math>d = \sqrt{(x – a)^2 + (y – b)^2}\,\mbox{.}</math>}} | {{Fristående formel||<math>d = \sqrt{(x – a)^2 + (y – b)^2}\,\mbox{.}</math>}} | ||
</div> | </div> | ||
- | + | The line joining the points is the hypotenuse of a triangle whose legs are parallel to the coordinate axes. | |
<center>{{:4.1 - Figur - Avståndsformeln}}</center> | <center>{{:4.1 - Figur - Avståndsformeln}}</center> | ||
- | + | The legs of the triangle have lengths equal to the difference in the ''x''- and ''y''-directions of the points, that is <math>|x-a|</math> and <math>|y-b|</math>. The Pythagorean theorem then gives the formula for the distance. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 4''' |
<ol type="a"> | <ol type="a"> | ||
- | <li> | + | <li>The distance between <math>(1,2)</math> and <math>(3,1)</math> is |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
d = \sqrt{ (1-3)^2 + (2-1)^2} | d = \sqrt{ (1-3)^2 + (2-1)^2} | ||
Zeile 141: | Zeile 141: | ||
= \sqrt{5}\,\mbox{.}</math>}}</li> | = \sqrt{5}\,\mbox{.}</math>}}</li> | ||
- | <li> | + | <li>The distance between <math>(-1,0)</math> and <math>(-2,-5)</math> is |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
d = \sqrt{ (-1-(-2))^2 + (0-(-5))^2} | d = \sqrt{ (-1-(-2))^2 + (0-(-5))^2} | ||
Zeile 151: | Zeile 151: | ||
- | == | + | == Circles == |
- | + | A circle consists of all the points that are at a given fixed distance <math>r</math> from a point <math>(a,b)</math>. | |
<center>{{:4.1 - Figur - Cirkel}}</center> | <center>{{:4.1 - Figur - Cirkel}}</center> | ||
- | + | The distance <math>r</math> is called the circle´s radius and the point <math>(a,b)</math> is its centre. The figure below shows the other important concepts. | |
{| align="center" | {| align="center" | ||
Zeile 173: | Zeile 173: | ||
|align="center"|Tangent | |align="center"|Tangent | ||
|| | || | ||
- | |align="center"| | + | |align="center"| Chord |
|| | || | ||
- | |align="center"| | + | |align="center"| Secant |
|- | |- | ||
|height="15px"| | |height="15px"| | ||
Zeile 187: | Zeile 187: | ||
|align="center"|{{:4.1 - Figur - Cirkelsegment}} | |align="center"|{{:4.1 - Figur - Cirkelsegment}} | ||
|- | |- | ||
- | |align="center"| | + | |align="center"| Arc of a circle |
|| | || | ||
- | |align="center"| | + | |align="center"| circumference |
|| | || | ||
- | |align="center"| | + | |align="center"| sector of a circle |
|| | || | ||
- | |align="center"| | + | |align="center"|segment of a circle |
|} | |} | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 5''' |
{| width="100%" | {| width="100%" | ||
- | || | + | ||A sector of a circle is given in the figure on the right. |
<ol type="a"> | <ol type="a"> | ||
- | <li> | + | <li> Determine its arc length . |
<br> | <br> | ||
<br> | <br> | ||
- | + | The central angle <math>50^\circ</math> is in radians | |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
50^\circ = 50 \cdot 1^\circ | 50^\circ = 50 \cdot 1^\circ | ||
- | = 50 \cdot \frac{\pi}{180}\ \mbox{ | + | = 50 \cdot \frac{\pi}{180}\ \mbox{ radians } |
- | = \frac{5\pi}{18}\ \mbox{ | + | = \frac{5\pi}{18}\ \mbox{ radians. }</math>}} |
</li> | </li> | ||
</ol> | </ol> | ||
Zeile 216: | Zeile 216: | ||
|} | |} | ||
<ol style="list-style-type:none; padding-top:0; margin-top:0;"> | <ol style="list-style-type:none; padding-top:0; margin-top:0;"> | ||
- | <li> | + | <li>The way radians have been defined means that the arc length is the radius multiplied by the angle measured in radians, |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
- | 3 \cdot \frac{5\pi}{18}\ \mbox{ | + | 3 \cdot \frac{5\pi}{18}\ \mbox{units } |
- | = \frac{5\pi}{6}\ \mbox{ | + | = \frac{5\pi}{6}\ \mbox{ units . }</math>}}</li> |
</ol> | </ol> | ||
<ol type="a" start="2"> | <ol type="a" start="2"> | ||
- | <li> | + | <li>Determine the area of the circle segment. |
<br> | <br> | ||
<br> | <br> | ||
- | + | The circle segment´s share of the entire circle is | |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
\frac{50^\circ}{360^\circ} = \frac{5}{36}</math>}} | \frac{50^\circ}{360^\circ} = \frac{5}{36}</math>}} | ||
- | + | and this means that its area is <math>\frac{5}{36}</math> parts of the circle area, which is <math>\pi r^2 = \pi 3^2 = 9\pi</math>, i.e. | |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
- | \frac{5}{36} \cdot 9\pi\ \mbox{ | + | \frac{5}{36} \cdot 9\pi\ \mbox{ units }= \frac{5\pi}{4}\ \mbox{ units. }</math>}}</li> |
</ol> | </ol> | ||
</div> | </div> | ||
- | + | A point <math>(x,y)</math> lies on the circle that has its centre at <math>(a,b)</math> and radius <math>r</math>, if its distance from the centre is equal to <math>r</math>. This condition can be formulated with the distance formula as | |
<div class="regel"> | <div class="regel"> | ||
{| width="100%" | {| width="100%" | ||
- | ||''' | + | ||'''Circle equation: ''' |
{{Fristående formel||<math>(x – a)^2 + (y – b)^2 = r^2\,\mbox{.}</math>}} | {{Fristående formel||<math>(x – a)^2 + (y – b)^2 = r^2\,\mbox{.}</math>}} | ||
|align="right"|{{:4.1 - Figur - Cirkelns ekvation}} | |align="right"|{{:4.1 - Figur - Cirkelns ekvation}} | ||
Zeile 244: | Zeile 244: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 6''' |
{| width="100%" | {| width="100%" | ||
|- | |- | ||
|width="100%"| | |width="100%"| | ||
<ol type="a"> | <ol type="a"> | ||
- | <li><math>(x-1)^2 + (y-2)^2 = 9\quad</math> | + | <li><math>(x-1)^2 + (y-2)^2 = 9\quad</math> is the equation for a circle with its centre at <math>(1,2)</math> and radius <math>\sqrt{9} = 3</math>.</li> |
</ol> | </ol> | ||
|align="right"|{{:4.1 - Figur - Ekvationen (x - 1)² + (y - 2)² = 9}} | |align="right"|{{:4.1 - Figur - Ekvationen (x - 1)² + (y - 2)² = 9}} | ||
Zeile 255: | Zeile 255: | ||
|width="100%"| | |width="100%"| | ||
<ol type="a" start=2> | <ol type="a" start=2> | ||
- | <li><math>x^2 + (y-1)^2 = 1\quad</math> | + | <li><math>x^2 + (y-1)^2 = 1\quad</math> can be written as <math>(x-0)^2 + (y-1)^2 = 1</math> and is the equation of a circle with its centre at <math>(0,1)</math> and having a radius <math>\sqrt{1} = 1</math>.</li> |
</ol> | </ol> | ||
|align="right"|{{:4.1 - Figur - Ekvationen x² + (y - 1)² = 1}} | |align="right"|{{:4.1 - Figur - Ekvationen x² + (y - 1)² = 1}} | ||
Zeile 261: | Zeile 261: | ||
|width="100%"| | |width="100%"| | ||
<ol type="a" start=3> | <ol type="a" start=3> | ||
- | <li><math>(x+1)^2 + (y-3)^2 = 5\quad</math> | + | <li><math>(x+1)^2 + (y-3)^2 = 5\quad</math> can be written as <math>(x-(-1))^2 + (y-3)^2 = 5</math> and is the equation of a circle with its centre at <math>(-1,3)</math> and having a radius <math>\sqrt{5} \approx 2\textrm{.}236</math>.</li> |
</ol> | </ol> | ||
|align="right"|{{:4.1 - Figur - Ekvationen (x + 1)² + (y - 3)² = 5}} | |align="right"|{{:4.1 - Figur - Ekvationen (x + 1)² + (y - 3)² = 5}} | ||
Zeile 268: | Zeile 268: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 7''' |
<ol type="a"> | <ol type="a"> | ||
- | <li> | + | <li> Does the point <math>(1,2)</math> lie on the circle <math>(x-4)^2 +y^2=13</math>? |
<br> | <br> | ||
<br> | <br> | ||
- | + | Inserting the coordinates of the point <math>x=1</math> and <math>y=2</math> in the circle equation, we have that | |
{{Fristående formel||<math>\begin{align*} | {{Fristående formel||<math>\begin{align*} | ||
- | \mbox{ | + | \mbox{LHS } &= (1-4)^2+2^2\\ |
- | &= (-3)^2+2^2 = 9+4 = 13 = \mbox{ | + | &= (-3)^2+2^2 = 9+4 = 13 = \mbox{RHS}\,\mbox{.} |
\end{align*}</math>}} | \end{align*}</math>}} | ||
- | + | Since the point satisfies the circle equation it lies on the circle. | |
<center>{{:4.1 - Figur - Ekvationen (x - 4)² + y² = 13}}</center></li> | <center>{{:4.1 - Figur - Ekvationen (x - 4)² + y² = 13}}</center></li> | ||
- | <li> | + | <li> Determine the equation for the circle that has its centre at <math>(3,4)</math> and goes through the point <math>(1,0)</math>. |
<br> | <br> | ||
<br> | <br> | ||
- | + | Since the point <math>(1,0)</math> lies on the circle, the radius of the circle must be equal to the distance of the point from <math>(1,0)</math> to the centre <math>(3,4)</math>. The distance formula gives that this distance is | |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
c = \sqrt{(3-1)^2 + (4-0)^2} = \sqrt{4 +16} = \sqrt{20} \, \mbox{.}</math>}} | c = \sqrt{(3-1)^2 + (4-0)^2} = \sqrt{4 +16} = \sqrt{20} \, \mbox{.}</math>}} | ||
- | + | The circle equation is therefore | |
{{Fristående formel||<math>(x-3)^2 + (y-4)^2 = 20 \; \mbox{.}</math>}} | {{Fristående formel||<math>(x-3)^2 + (y-4)^2 = 20 \; \mbox{.}</math>}} | ||
<center>{{:4.1 - Figur - Ekvationen (x - 3)² + (y - 4)² = 20}}</center></li> | <center>{{:4.1 - Figur - Ekvationen (x - 3)² + (y - 4)² = 20}}</center></li> | ||
Zeile 296: | Zeile 296: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 8''' |
- | + | Determine the centre and radius of the circle with equation <math>\ x^2 + y^2 – 2x + 4y + 1 = 0</math>. | |
- | + | Let us try to write the equation of the circle in the form | |
{{Fristående formel||<math>(x – a)^2 + (y – b)^2 = r^2</math>}} | {{Fristående formel||<math>(x – a)^2 + (y – b)^2 = r^2</math>}} | ||
- | + | because then we can directly read from this that the midpoint is <math>(a,b)</math> and the radius is <math>r</math>. | |
- | + | Start by completing the square for the terms containing <math>x</math> on the left-hand side | |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
\underline{x^2-2x\vphantom{(}} + y^2+4y + 1 | \underline{x^2-2x\vphantom{(}} + y^2+4y + 1 | ||
= \underline{(x-1)^2-1^2} + y^2+4y + 1</math>}} | = \underline{(x-1)^2-1^2} + y^2+4y + 1</math>}} | ||
- | ( | + | (the underlined terms shows the terms involved). |
- | + | Complete the square for the terms containing <math>y</math> | |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
(x-1)^2-1^2 + \underline{y^2+4y} + 1 | (x-1)^2-1^2 + \underline{y^2+4y} + 1 | ||
= (x-1)^2-1^2 + \underline{(y+2)^2-2^2} + 1\,\mbox{.}</math>}} | = (x-1)^2-1^2 + \underline{(y+2)^2-2^2} + 1\,\mbox{.}</math>}} | ||
- | + | The left-hand side is equal to | |
{{Fristående formel||<math> (x-1)^2 + (y+2)^2-4 </math>}} | {{Fristående formel||<math> (x-1)^2 + (y+2)^2-4 </math>}} | ||
- | + | and moving over the 4 to to the right-hand side we get the equation | |
{{Fristående formel||<math> (x-1)^2 + (y+2)^2 = 4 \, \mbox{.}</math>}} | {{Fristående formel||<math> (x-1)^2 + (y+2)^2 = 4 \, \mbox{.}</math>}} | ||
- | + | We can interpret this as follows: The centre is at <math>(1,-2)</math> and the radius is <math>\sqrt{4}= 2</math>. | |
<center>{{:4.1 - Figur - Ekvationen x² + y² - 2x + 4y + 1 = 0}}</center> | <center>{{:4.1 - Figur - Ekvationen x² + y² - 2x + 4y + 1 = 0}}</center> | ||
Zeile 328: | Zeile 328: | ||
- | [[4.1 Övningar| | + | [[4.1 Övningar|Exercises]] |
<div class="inforuta" style="width:580px;"> | <div class="inforuta" style="width:580px;"> | ||
- | ''' | + | '''Study advice''' |
- | ''' | + | '''The basic and final tests''' |
- | + | After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge. | |
- | ''' | + | '''Keep in mind that:''' |
- | ''' | + | '''Reviews''' |
- | + | For those of you who want to deepen your studies or need more detailed explanations consider the following references: | |
- | [http://sv.wikipedia.org/wiki/Pythagoras_sats | + | [http://sv.wikipedia.org/wiki/Pythagoras_sats Learn more about Pythagoras theorem in English Wikipedia ] |
- | [http://mathworld.wolfram.com/Circle.html | + | [http://mathworld.wolfram.com/Circle.html Read more in Mathworld about the circle ] |
- | ''' | + | '''Useful web sites''' |
- | [http://www.math.kth.se/online/images/sinus_och_cosinus_i_enhetscirkeln.swf | + | [http://www.math.kth.se/online/images/sinus_och_cosinus_i_enhetscirkeln.swf Interactive experiments: the sine and cosine on the unit circle ] (Flash) |
</div> | </div> |
Aktuelle Version
Theory | Exercises |
Contents:
- Various angle measures (degrees, radians and revolutions)
- The Pythagorean theorem
- Formula for distance in the plane
- Equation of a circle
Learning outcomes:
After this section, you will have learned :
- To convert between degrees, radians and revolutions.
- To calculate the area and circumference of sectors of a circle.
- The concepts of right-angled triangles including its legs and hypotenuse.
- To formulate and use the Pythagorean theorem.
- To calculate the distance between two points in the plane.
- To sketch circles by completing the square in their equations.
- The concepts of unit circle, tangent, radius, diameter, circumference, chord and arc.
- To solve geometric problems that contain circles.
Angle measures
There are several different units for measuring angles, which are used in different contexts. The two most common within mathematics are degrees and radians.
- Degrees. If a complete revolution is divided into 360 parts, then each part is called 1 degree. Degrees are designated by \displaystyle {}^\circ.
- Radians. Another way to measure an angle, is to use the length of the arc which subtends the angle in relation to the radius as a measure of the angle. This unit is called radian. A revolution is \displaystyle 2\pi radians as the circumference of a circle is \displaystyle 2\pi r, where \displaystyle r is the radius of the circle.
A complete revolution is \displaystyle 360^\circ or \displaystyle 2\pi radians which means
\displaystyle \begin{align*}
&1^\circ = \frac{1}{360} \cdot 2\pi\ \mbox{ radians } = \frac{\pi}{180}\ \mbox{ radians,}\\ &1\ \mbox{ radian } = \frac{1}{2\pi} \cdot 360^\circ = \frac{180^\circ}{\pi}\,\mbox{.} \end{align*} |
These conversion relations can be used to convert between degrees and radians.
Example 1
- \displaystyle 30^\circ = 30 \cdot 1^\circ = 30 \cdot \frac{\pi}{180}\ \mbox{ radians } = \frac{\pi}{6}\ \mbox{ radians }
- \displaystyle \frac{\pi}{8}\ \mbox { radians } = \frac{\pi}{8} \cdot (1 \; \mbox{radians}\,) = \frac{\pi}{8} \cdot \frac{180^\circ}{\pi} = 22{,}5^\circ
In some contexts, it may be useful to talk about negative angles and angles greater than 360°. This means that the same direction can be designated by different angles that differ from each other by an integral number of revolutions.
Example 2
- The angles \displaystyle -55^\circ and \displaystyle 665^\circ
indicate the same direction because
\displaystyle -55^\circ + 2 \cdot 360^\circ = 665^\circ\,\mbox{.}
- The angles \displaystyle \frac{3\pi}{7} and \displaystyle
-\frac{11\pi}{7} indicate the same direction because
\displaystyle \frac{3\pi}{7} - 2\pi = -\frac{11\pi}{7}\,\mbox{.}
- The angles \displaystyle 36^\circ and \displaystyle
216^\circ do not specify the same direction, but opposite directions since
\displaystyle 36^\circ + 180^\circ = 216^\circ\,\mbox{.}
Formula for distance in the plane
The theorem of Pythagoras is one of the most famous theorems in mathematics and says that in a right-angled triangle with the legs \displaystyle a and \displaystyle b, and the hypotenuse \displaystyle c then
The Pythagorean theorem:
|
|
Example 3
The triangle on the right is
and therefore hypotenuse \displaystyle c is equal to
|
|
The Pythagorean theorem can be used to calculate the distance between two points in a coordinate system.
Formula for distance:
The distance \displaystyle d between two points with coordinates \displaystyle (x,y) and \displaystyle (a,b) is
\displaystyle d = \sqrt{(x – a)^2 + (y – b)^2}\,\mbox{.} |
The line joining the points is the hypotenuse of a triangle whose legs are parallel to the coordinate axes.
The legs of the triangle have lengths equal to the difference in the x- and y-directions of the points, that is \displaystyle |x-a| and \displaystyle |y-b|. The Pythagorean theorem then gives the formula for the distance.
Example 4
- The distance between \displaystyle (1,2) and \displaystyle (3,1) is
\displaystyle d = \sqrt{ (1-3)^2 + (2-1)^2} = \sqrt{(-2)^2 + 1^2} = \sqrt{ 4+1} = \sqrt{5}\,\mbox{.}
- The distance between \displaystyle (-1,0) and \displaystyle (-2,-5) is
\displaystyle d = \sqrt{ (-1-(-2))^2 + (0-(-5))^2} = \sqrt{1^2 + 5^2} = \sqrt{1+25} = \sqrt{26}\,\mbox{.}
Circles
A circle consists of all the points that are at a given fixed distance \displaystyle r from a point \displaystyle (a,b).
The distance \displaystyle r is called the circle´s radius and the point \displaystyle (a,b) is its centre. The figure below shows the other important concepts.
|
|
|
| |||
Diameter | Tangent | Chord | Secant | |||
|
|
|
| |||
Arc of a circle | circumference | sector of a circle | segment of a circle |
Example 5
A sector of a circle is given in the figure on the right.
|
|
- The way radians have been defined means that the arc length is the radius multiplied by the angle measured in radians,
\displaystyle 3 \cdot \frac{5\pi}{18}\ \mbox{units } = \frac{5\pi}{6}\ \mbox{ units . }
- Determine the area of the circle segment.
The circle segment´s share of the entire circle is\displaystyle \frac{50^\circ}{360^\circ} = \frac{5}{36}
and this means that its area is \displaystyle \frac{5}{36} parts of the circle area, which is \displaystyle \pi r^2 = \pi 3^2 = 9\pi, i.e.
\displaystyle \frac{5}{36} \cdot 9\pi\ \mbox{ units }= \frac{5\pi}{4}\ \mbox{ units. }
A point \displaystyle (x,y) lies on the circle that has its centre at \displaystyle (a,b) and radius \displaystyle r, if its distance from the centre is equal to \displaystyle r. This condition can be formulated with the distance formula as
Circle equation:
|
|
Example 6
|
|
|
|
|
|
Example 7
- Does the point \displaystyle (1,2) lie on the circle \displaystyle (x-4)^2 +y^2=13?
Inserting the coordinates of the point \displaystyle x=1 and \displaystyle y=2 in the circle equation, we have that\displaystyle \begin{align*} \mbox{LHS } &= (1-4)^2+2^2\\ &= (-3)^2+2^2 = 9+4 = 13 = \mbox{RHS}\,\mbox{.} \end{align*}
Since the point satisfies the circle equation it lies on the circle.
- Determine the equation for the circle that has its centre at \displaystyle (3,4) and goes through the point \displaystyle (1,0).
Since the point \displaystyle (1,0) lies on the circle, the radius of the circle must be equal to the distance of the point from \displaystyle (1,0) to the centre \displaystyle (3,4). The distance formula gives that this distance is\displaystyle c = \sqrt{(3-1)^2 + (4-0)^2} = \sqrt{4 +16} = \sqrt{20} \, \mbox{.}
The circle equation is therefore
\displaystyle (x-3)^2 + (y-4)^2 = 20 \; \mbox{.}
Example 8
Determine the centre and radius of the circle with equation \displaystyle \ x^2 + y^2 – 2x + 4y + 1 = 0.
Let us try to write the equation of the circle in the form
\displaystyle (x – a)^2 + (y – b)^2 = r^2 |
because then we can directly read from this that the midpoint is \displaystyle (a,b) and the radius is \displaystyle r.
Start by completing the square for the terms containing \displaystyle x on the left-hand side
\displaystyle
\underline{x^2-2x\vphantom{(}} + y^2+4y + 1 = \underline{(x-1)^2-1^2} + y^2+4y + 1 |
(the underlined terms shows the terms involved).
Complete the square for the terms containing \displaystyle y
\displaystyle
(x-1)^2-1^2 + \underline{y^2+4y} + 1 = (x-1)^2-1^2 + \underline{(y+2)^2-2^2} + 1\,\mbox{.} |
The left-hand side is equal to
\displaystyle (x-1)^2 + (y+2)^2-4 |
and moving over the 4 to to the right-hand side we get the equation
\displaystyle (x-1)^2 + (y+2)^2 = 4 \, \mbox{.} |
We can interpret this as follows: The centre is at \displaystyle (1,-2) and the radius is \displaystyle \sqrt{4}= 2.
Study advice
The basic and final tests
After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.
Keep in mind that:
Reviews
For those of you who want to deepen your studies or need more detailed explanations consider the following references:
Learn more about Pythagoras theorem in English Wikipedia
Read more in Mathworld about the circle
Useful web sites
Interactive experiments: the sine and cosine on the unit circle (Flash)