4.2 Övningar
Aus Förberedande kurs i matematik 1
(Translated links into English) |
|||
(Der Versionsvergleich bezieht 4 dazwischen liegende Versionen mit ein.) | |||
Zeile 2: | Zeile 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #000" width="5px" | | | style="border-bottom:1px solid #000" width="5px" | | ||
- | {{ | + | {{Ej vald flik|[[4.2 Trigonometriska funktioner|Theory]]}} |
- | {{ | + | {{Vald flik|[[4.2 Övningar|Exercises]]}} |
| style="border-bottom:1px solid #000" width="100%"| | | style="border-bottom:1px solid #000" width="100%"| | ||
|} | |} | ||
- | === | + | ===Exercise 4.2:1=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Using the trigonometric functions, determine the length of the side marked<math>\,x\,</math> | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
Zeile 29: | Zeile 29: | ||
{{:4.2 - Figur - Rätvinklig triangel med vinkeln 50° och sidor x och 19}} | {{:4.2 - Figur - Rätvinklig triangel med vinkeln 50° och sidor x och 19}} | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Svar 4.2:1|Solution a |Lösning 4.2:1a|Solution b |Lösning 4.2:1b|Solution c |Lösning 4.2:1c|Solution d |Lösning 4.2:1d|Solution e |Lösning 4.2:1e|Solution f |Lösning 4.2:1f}} |
- | === | + | ===Exercise 4.2:2=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Determine a trigonometric equation that is satisfied by <math>\,v\,</math>. | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
Zeile 51: | Zeile 51: | ||
|width="50%" | {{:4.2 - Figur - Likbent triangel med toppvinkeln v och sidor 2, 3 och 3}} | |width="50%" | {{:4.2 - Figur - Likbent triangel med toppvinkeln v och sidor 2, 3 och 3}} | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Svar 4.2:2|Solution a |Lösning 4.2:2a|Solution b |Lösning 4.2:2b|Solution c |Lösning 4.2:2c|Solution d |Lösning 4.2:2d|Solution e |Lösning 4.2:2e|Solution f |Lösning 4.2:2f}} |
- | === | + | ===Exercise 4.2:3=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Determine | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Zeile 71: | Zeile 71: | ||
|width="33%" | <math>\cos{\left(-\displaystyle \frac{\pi}{6}\right)}</math> | |width="33%" | <math>\cos{\left(-\displaystyle \frac{\pi}{6}\right)}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Svar 4.2:3|Solution a |Lösning 4.2:3a|Solution b |Lösning 4.2:3b|Solution c |Lösning 4.2:3c|Solution d |Lösning 4.2:3d|Solution e |Lösning 4.2:3e|Solution f |Lösning 4.2:3f}} |
- | === | + | ===Exercise 4.2:4=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Determine | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Zeile 91: | Zeile 91: | ||
|width="33%" | <math>\tan{\left(-\displaystyle \frac{5\pi}{3}\right)}</math> | |width="33%" | <math>\tan{\left(-\displaystyle \frac{5\pi}{3}\right)}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Svar 4.2:4|Solution a |Lösning 4.2:4a|Solution b |Lösning 4.2:4b|Solution c |Lösning 4.2:4c|Solution d |Lösning 4.2:4d|Solution e |Lösning 4.2:4e|Solution f |Lösning 4.2:4f}} |
- | === | + | ===Exercise 4.2:5=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Determine | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Zeile 106: | Zeile 106: | ||
|width="25%" | <math>\tan{495^\circ}</math> | |width="25%" | <math>\tan{495^\circ}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Svar 4.2:5|Solution a |Lösning 4.2:5a|Solution b |Lösning 4.2:5b|Solution c |Lösning 4.2:5c|Solution d |Lösning 4.2:5d}} |
- | === | + | ===Exercise 4.2:6=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Determine the length of the side marked <math>\,x\,</math>. | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
| | | | ||
|width="100%" | <center> {{:4.2 - Figur - Två trianglar med vinklar 45° resp. 60° och höjdskillnad x}} </center> | |width="100%" | <center> {{:4.2 - Figur - Två trianglar med vinklar 45° resp. 60° och höjdskillnad x}} </center> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Svar 4.2:6|Solution |Lösning 4.2:6}} |
- | === | + | ===Exercise 4.2:7=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | In order to determine the width of a river, we measure from two points, A and B on one side of the straight bank to a tree, C, on the opposite side. How wide is the river if the measurements in the figure are correct? | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
| | | | ||
|width="100%" | <center> {{:4.2 - Figur - Älv}} </center> | |width="100%" | <center> {{:4.2 - Figur - Älv}} </center> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Svar 4.2:7|Solution |Lösning 4.2:7}} |
- | === | + | ===Exercise 4.2:8=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | A rod of length <math>\,\ell\,</math> hangs from two ropes of length <math>\,a\,</math> and <math>\,b\,</math> as shown in the figure. The ropes make angles <math>\,\alpha\,</math> and <math>\,\beta\,</math> with the vertical. Determine a trigonometric equation | |
+ | for the angle <math>\,\gamma\,</math> which the rod makes with the vertical. | ||
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
| | | | ||
|width="100%" | <center> {{:4.2 - Figur - Hängande stång}} </center> | |width="100%" | <center> {{:4.2 - Figur - Hängande stång}} </center> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Svar 4.2:8|Solution |Lösning 4.2:8}} |
- | === | + | ===Exercise 4.2:9=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | The road from ''A'' to ''B'' consists of three straight parts ''AP'', ''PQ'' and ''QB'', which are 4.0 km, 12.0 km and 5.0 km respectively. The angles marked at ''P'' and ''Q'' in the figure are 30° and 90° respectively. Calculate the distance as the crow flies from ''A'' to ''B''. (The exercise is taken from the Swedish National Exam in Mathematics, November 1976, although slightly modified.) | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
| | | | ||
|width="100%" | <center> {{:4.2 - Figur - Bilväg från A till B via P och Q}} </center> | |width="100%" | <center> {{:4.2 - Figur - Bilväg från A till B via P och Q}} </center> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Svar 4.2:9|Solution |Lösning 4.2:9}} |
Aktuelle Version
Theory | Exercises |
Exercise 4.2:1
Using the trigonometric functions, determine the length of the side marked\displaystyle \,x\,
a) |
| b) |
|
c) |
| d) |
|
e) |
| f) |
|
Exercise 4.2:2
Determine a trigonometric equation that is satisfied by \displaystyle \,v\,.
a) |
| b) |
|
c) |
| d) |
|
e) |
| f) |
|
Exercise 4.2:3
Determine
a) | \displaystyle \sin{\left(-\displaystyle \frac{\pi}{2}\right)} | b) | \displaystyle \cos{2\pi} | c) | \displaystyle \sin{9\pi} |
d) | \displaystyle \cos{\displaystyle \frac{7\pi}{2}} | e) | \displaystyle \sin{\displaystyle \frac{3\pi}{4}} | f) | \displaystyle \cos{\left(-\displaystyle \frac{\pi}{6}\right)} |
Exercise 4.2:4
Determine
a) | \displaystyle \cos{\displaystyle \frac{11\pi}{6}} | b) | \displaystyle \cos{\displaystyle \frac{11\pi}{3}} | c) | \displaystyle \tan{\displaystyle \frac{3\pi}{4}} |
d) | \displaystyle \tan{\pi} | e) | \displaystyle \tan{\displaystyle \frac{7\pi}{6}} | f) | \displaystyle \tan{\left(-\displaystyle \frac{5\pi}{3}\right)} |
Exercise 4.2:5
Determine
a) | \displaystyle \cos{135^\circ} | b) | \displaystyle \tan{225^\circ} | c) | \displaystyle \cos{330^\circ} | d) | \displaystyle \tan{495^\circ} |
Exercise 4.2:6
Determine the length of the side marked \displaystyle \,x\,.
|
Exercise 4.2:7
In order to determine the width of a river, we measure from two points, A and B on one side of the straight bank to a tree, C, on the opposite side. How wide is the river if the measurements in the figure are correct?
|
Exercise 4.2:8
A rod of length \displaystyle \,\ell\, hangs from two ropes of length \displaystyle \,a\, and \displaystyle \,b\, as shown in the figure. The ropes make angles \displaystyle \,\alpha\, and \displaystyle \,\beta\, with the vertical. Determine a trigonometric equation for the angle \displaystyle \,\gamma\, which the rod makes with the vertical.
|
Exercise 4.2:9
The road from A to B consists of three straight parts AP, PQ and QB, which are 4.0 km, 12.0 km and 5.0 km respectively. The angles marked at P and Q in the figure are 30° and 90° respectively. Calculate the distance as the crow flies from A to B. (The exercise is taken from the Swedish National Exam in Mathematics, November 1976, although slightly modified.)
|