1.3 Potenser
Aus Förberedande kurs i matematik 1
(Ny sida: __NOTOC__ {{Info| '''Innehåll:''' * Positiv heltalsexponent * Negativ heltalsexponent * Rationell exponent * Potenslagar }} {{Info| '''Lärandemål:''' Efter detta avsnitt ska du ha lär...) |
K (small fixes) |
||
(Der Versionsvergleich bezieht 9 dazwischen liegende Versionen mit ein.) | |||
Zeile 1: | Zeile 1: | ||
__NOTOC__ | __NOTOC__ | ||
+ | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
+ | | style="border-bottom:1px solid #797979" width="5px" | | ||
+ | {{Vald flik|[[1.3 Potenser|Theory]]}} | ||
+ | {{Ej vald flik|[[1.3 Övningar|Exercises]]}} | ||
+ | | style="border-bottom:1px solid #797979" width="100%"| | ||
+ | |} | ||
+ | |||
{{Info| | {{Info| | ||
- | ''' | + | '''Content: ''' |
- | * | + | * Positive integer exponent |
- | * | + | * Negative integer exponent |
- | * | + | * Rational exponents |
- | * | + | * Laws of exponents |
}} | }} | ||
{{Info| | {{Info| | ||
- | ''' | + | '''Learning outcomes:''' |
- | + | After this section, you will have learned to: | |
- | * | + | * Recognise the concepts of base and exponent. |
- | * | + | *Calculate integer power expressions |
- | * | + | *Use the laws of exponents to simplify expressions containing powers. |
- | * | + | * Know when the laws of exponents are applicable (positive basis). |
- | * | + | *Determine which of two powers is the larger based on a comparison of the base / exponent. |
}} | }} | ||
- | == | + | == Integer exponents == |
- | + | We use the multiplication symbol as a short-hand for repeated addition of the same number, for example, | |
- | + | ||
{{Fristående formel||<math>4 + 4 + 4 + 4 + 4 = 4 \cdot 5\mbox{.}</math>}} | {{Fristående formel||<math>4 + 4 + 4 + 4 + 4 = 4 \cdot 5\mbox{.}</math>}} | ||
- | + | In a similar way we use exponentials as a short-hand for repeated multiplication | |
+ | of the same number: | ||
{{Fristående formel||<math> 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 = 4^5\mbox{.}</math>}} | {{Fristående formel||<math> 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 = 4^5\mbox{.}</math>}} | ||
- | + | The 4 is called the base of the power, and the 5 is its exponent. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | '''Example 1 ''' |
<ol type="a"> | <ol type="a"> | ||
Zeile 44: | Zeile 51: | ||
= 0{,}1 \cdot 0{,}1 \cdot 0{,}1 = 0{,}001</math></li> | = 0{,}1 \cdot 0{,}1 \cdot 0{,}1 = 0{,}001</math></li> | ||
<li><math>(-2)^4 | <li><math>(-2)^4 | ||
- | = (-2) \cdot (-2) \cdot (-2) \cdot (-2)= 16</math>, | + | = (-2) \cdot (-2) \cdot (-2) \cdot (-2)= 16</math>, but <math> -2^4 |
= -(2^4) = - (2 \cdot 2 \cdot 2 \cdot 2) = -16</math></li> | = -(2^4) = - (2 \cdot 2 \cdot 2 \cdot 2) = -16</math></li> | ||
- | <li><math> 2\cdot 3^2 = 2 \cdot 3 \cdot 3 = 18</math>, | + | <li><math> 2\cdot 3^2 = 2 \cdot 3 \cdot 3 = 18</math>, but <math> |
(2\cdot3)^2 = 6^2 = 36</math></li> | (2\cdot3)^2 = 6^2 = 36</math></li> | ||
</ol> | </ol> | ||
Zeile 52: | Zeile 59: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | '''Example 2''' |
<ol type="a"> | <ol type="a"> | ||
Zeile 69: | Zeile 76: | ||
</div> | </div> | ||
- | + | The last example can be generalised to two useful rules when calculating powers: | |
<div class="regel"> | <div class="regel"> | ||
- | {{Fristående formel||<math>\left(\displaystyle\frac{a}{b}\right)^m = \displaystyle\frac{a^m}{b^m} \quad \mbox{ | + | {{Fristående formel||<math>\left(\displaystyle\frac{a}{b}\right)^m = \displaystyle\frac{a^m}{b^m} \quad \mbox{and}\quad (ab)^m = a^m b^m\,\mbox{.}</math>}} |
</div> | </div> | ||
- | == | + | == Laws of exponents == |
- | + | There are a few more rules coming from the definition of power which are useful when doing calculations.You can see for example that | |
- | {{Fristående formel||<math>2^3 \cdot 2^5 = \underbrace{\,2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 3\ {\rm | + | {{Fristående formel||<math>2^3 \cdot 2^5 = \underbrace{\,2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 3\ {\rm factors }} \cdot \underbrace{\,2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 5\ {\rm factors }} = \underbrace{\,2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ (3 + 5)\ {\rm factors}} = 2^{3+5} = 2^8</math>}} |
- | + | which generally can be expressed as | |
<div class="regel"> | <div class="regel"> | ||
{{Fristående formel||<math>a^m \cdot a^n = a^{m+n}\mbox{.}</math>}} | {{Fristående formel||<math>a^m \cdot a^n = a^{m+n}\mbox{.}</math>}} | ||
</div> | </div> | ||
- | + | There is also a useful simplification rule for division of powers which have the same base. | |
{{Fristående formel||<math>\frac{2^7}{2^3}=\displaystyle\frac{ 2\cdot 2\cdot 2\cdot 2\cdot \not{2}\cdot \not{2}\cdot \not{2} }{ \not{2}\cdot \not{2}\cdot \not{2}} = 2^{7-3}=2^4\mbox{.}</math>}} | {{Fristående formel||<math>\frac{2^7}{2^3}=\displaystyle\frac{ 2\cdot 2\cdot 2\cdot 2\cdot \not{2}\cdot \not{2}\cdot \not{2} }{ \not{2}\cdot \not{2}\cdot \not{2}} = 2^{7-3}=2^4\mbox{.}</math>}} | ||
- | + | The general rule is | |
<div class="regel"> | <div class="regel"> | ||
{{Fristående formel||<math>\displaystyle\frac{a^m}{a^n}= a^{m-n}\mbox{.}</math>}} | {{Fristående formel||<math>\displaystyle\frac{a^m}{a^n}= a^{m-n}\mbox{.}</math>}} | ||
</div> | </div> | ||
- | + | For the case when the base itself is a power one has another useful rule. We see that | |
- | + | ||
- | {{Fristående formel||<math> (5^2)^3 = 5^2 \cdot 5^2 \cdot 5^2 = \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm | + | {{Fristående formel||<math> (5^2)^3 = 5^2 \cdot 5^2 \cdot 5^2 = \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm factors}} \cdot \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm factors}} \cdot \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{2\ {\rm factors}} = \underbrace{\,5\cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm times}\ 2\ {\rm factors}} = 5^{2 \cdot 3} = 5^6\mbox{}</math>}} |
- | + | and | |
- | {{Fristående formel||<math> (5^3)^2 = 5^3\cdot5^3= \underbrace{\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm | + | {{Fristående formel||<math> (5^3)^2 = 5^3\cdot5^3= \underbrace{\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm factors}} \cdot \underbrace{\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm factors}} = \underbrace{\,5\cdot 5 \cdot 5\,\cdot\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{2\ {\rm times}\ 3\ {\rm factors}}=5^{3\cdot2}=5^6\mbox{.}</math>}} |
- | + | Generally, this can be written | |
<div class="regel"> | <div class="regel"> | ||
{{Fristående formel||<math>(a^m)^n = a^{m \cdot n}\mbox{.} </math>}} | {{Fristående formel||<math>(a^m)^n = a^{m \cdot n}\mbox{.} </math>}} | ||
Zeile 112: | Zeile 118: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 3''' |
<ol type="a"> | <ol type="a"> | ||
Zeile 126: | Zeile 132: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | '''Example 4''' |
<ol type="a"> | <ol type="a"> | ||
Zeile 137: | Zeile 143: | ||
- | + | If a fraction has the same expression for the exponent both in the numerator and the denominator we can simplify in two ways: | |
- | {{Fristående formel||<math>\frac{5^3}{5^3} = 5^{3-3} = 5^0\quad\text{ | + | {{Fristående formel||<math>\frac{5^3}{5^3} = 5^{3-3} = 5^0\quad\text{as well as}\quad \frac{5^3}{5^3} = \frac{ 5 \cdot 5 \cdot 5 }{ 5 \cdot 5 \cdot 5 } = \frac{125}{125} = 1\mbox{.}</math>}} |
+ | |||
+ | The only way for the rules of exponents to agree is to make the | ||
+ | following but natural definition that for all non zero ''a'' one has that | ||
- | För att räknereglerna för potenser ska stämma gör man alltså den naturliga definitionen att för alla ''a'' som inte är 0 gäller att | ||
<div class="regel"> | <div class="regel"> | ||
Zeile 147: | Zeile 155: | ||
</div> | </div> | ||
- | + | We can also run into examples where the exponent in the denominator is greater than that in the numerator. We can have, for example, | |
- | {{Fristående formel||<math>\frac{3^4}{3^6} = 3^{4-6} = 3^{-2}\quad\text{ | + | {{Fristående formel||<math>\frac{3^4}{3^6} = 3^{4-6} = 3^{-2}\quad\text{and}\quad \frac{3^4}{3^6} = \frac{\not{3} \cdot \not{3} \cdot \not{3} \cdot \not{3} }{ \not{3} \cdot \not{3} \cdot \not{3} \cdot \not{3} \cdot 3 \cdot 3} = \frac{1}{3 \cdot 3} = \frac{1}{3^2}\mbox{.}</math>}} |
- | + | We see that it is necessary to assume that the negative exponent implies that | |
{{Fristående formel||<math>3^{-2} = \frac{1}{3^2}\mbox{.}</math>}} | {{Fristående formel||<math>3^{-2} = \frac{1}{3^2}\mbox{.}</math>}} | ||
- | Den allmänna definitionen av negativa exponenter är att, för alla tal ''a'' som inte är 0 gäller att | ||
+ | The general definition of negative exponents is to interpret negative exponents | ||
+ | of all non zero numbers ''a'' as follows | ||
<div class="regel"> | <div class="regel"> | ||
{{Fristående formel||<math>a^{-n} = \frac{1}{a^n}\mbox{.}</math>}} | {{Fristående formel||<math>a^{-n} = \frac{1}{a^n}\mbox{.}</math>}} | ||
Zeile 161: | Zeile 170: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 5''' |
<ol type="a"> | <ol type="a"> | ||
Zeile 181: | Zeile 190: | ||
</div> | </div> | ||
- | + | If the base of a power is <math>-1</math> then the expression will simplify to either <math>-1</math> or <math>+1</math> depending on the value of the exponent | |
- | {{Fristående formel||<math>\eqalign{(-1)^1 &= -1\cr (-1)^2 &= (-1)\cdot(-1) = +1\cr (-1)^3 &= (-1)\cdot(-1)^2 = (-1)\cdot 1 = -1\cr (-1)^4 &= (-1)\cdot(-1)^3 = (-1)\cdot (-1) = 1\cr \quad\hbox{ | + | {{Fristående formel||<math>\eqalign{(-1)^1 &= -1\cr (-1)^2 &= (-1)\cdot(-1) = +1\cr (-1)^3 &= (-1)\cdot(-1)^2 = (-1)\cdot 1 = -1\cr (-1)^4 &= (-1)\cdot(-1)^3 = (-1)\cdot (-1) = +1\cr \quad\hbox{etc.}}</math>}} |
- | + | The rule is that <math>(-1)^n </math> is equal to<math>-1</math> | |
+ | if <math>n</math> is odd and equal to <math>+1</math> if <math>n</math> is even . | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 6''' |
<ol type="a"> | <ol type="a"> | ||
- | <li><math>(-1)^{56} = 1\quad</math> | + | <li><math>(-1)^{56} = 1\quad</math> as <math>56</math> is an even number </li> |
- | <li><math>\frac{1}{(-1)^{11}} = \frac{1}{-1} = -1\quad</math> | + | <li><math>\frac{1}{(-1)^{11}} = \frac{1}{-1} = -1\quad</math> because 11 is an odd number </li> |
<li><math>\frac{(-2)^{127}}{2^{130}} = \frac{(-1 \cdot 2)^{127}}{2^{130}} | <li><math>\frac{(-2)^{127}}{2^{130}} = \frac{(-1 \cdot 2)^{127}}{2^{130}} | ||
= \frac{(-1)^{127} \cdot 2^{127}}{2^{130}} | = \frac{(-1)^{127} \cdot 2^{127}}{2^{130}} | ||
Zeile 203: | Zeile 213: | ||
- | == | + | ==Changing the base == |
- | + | A point to observe is that when simplifying expressions try, if possible, to combine powers by choosing the same base. This often involves selecting 2, 3 or 5 as a base and, therefore, it is a good idea to learn to recognize the powers of these numbers, such as | |
{{Fristående formel||<math>4=2^2,\;\; 8=2^3,\;\; 16=2^4,\;\; 32=2^5,\;\; 64=2^6,\;\; 128=2^7,\;\ldots</math>}} | {{Fristående formel||<math>4=2^2,\;\; 8=2^3,\;\; 16=2^4,\;\; 32=2^5,\;\; 64=2^6,\;\; 128=2^7,\;\ldots</math>}} | ||
Zeile 213: | Zeile 223: | ||
{{Fristående formel||<math>25=5^2,\;\; 125=5^3,\;\; 625=5^4,\;\ldots</math>}} | {{Fristående formel||<math>25=5^2,\;\; 125=5^3,\;\; 625=5^4,\;\ldots</math>}} | ||
- | + | But even | |
{{Fristående formel||<math>\frac{1}{4}=\frac{1}{2^2} = 2^{-2},\;\; \frac{1}{8}=\frac{1}{2^3}=2^{-3},\;\; \frac{1}{16}=\frac{1}{2^4}=2^{-4},\;\ldots</math>}} | {{Fristående formel||<math>\frac{1}{4}=\frac{1}{2^2} = 2^{-2},\;\; \frac{1}{8}=\frac{1}{2^3}=2^{-3},\;\; \frac{1}{16}=\frac{1}{2^4}=2^{-4},\;\ldots</math>}} | ||
Zeile 221: | Zeile 231: | ||
{{Fristående formel||<math>\frac{1}{25}=\frac{1}{5^2}=5^{-2},\;\; \frac{1}{125}=\frac{1}{5^3}=5^{-3},\;\ldots</math>}} | {{Fristående formel||<math>\frac{1}{25}=\frac{1}{5^2}=5^{-2},\;\; \frac{1}{125}=\frac{1}{5^3}=5^{-3},\;\ldots</math>}} | ||
- | + | and so on. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 7''' |
<ol type="a"> | <ol type="a"> | ||
- | <li> | + | <li> Write <math>\ 8^3 \cdot 4^{-2} \cdot 16\ </math> as a power with base 2 |
<br/> | <br/> | ||
<br/> | <br/> | ||
Zeile 233: | Zeile 243: | ||
:<math>\qquad\quad{}= 2^9 \cdot 2^{-4} \cdot 2^4 = 2^{9-4+4} =2^9</math></li> | :<math>\qquad\quad{}= 2^9 \cdot 2^{-4} \cdot 2^4 = 2^{9-4+4} =2^9</math></li> | ||
- | <li> | + | <li> Write <math>\ \frac{27^2 \cdot (1/9)^{-2}}{81^2}\ </math> as a power with base 3. |
<br/> | <br/> | ||
<br/> | <br/> | ||
Zeile 239: | Zeile 249: | ||
:<math>\qquad\quad{} = \frac{3^{3 \cdot 2} \cdot 3^{(-2) \cdot (-2)}}{3^{4 \cdot 2}} = \frac{3^6\cdot 3^4}{3^8} = \frac{3^{6 + 4}}{3^8}= \frac{3^{10}}{3^8} = 3^{10-8}= 3^2</math></li> | :<math>\qquad\quad{} = \frac{3^{3 \cdot 2} \cdot 3^{(-2) \cdot (-2)}}{3^{4 \cdot 2}} = \frac{3^6\cdot 3^4}{3^8} = \frac{3^{6 + 4}}{3^8}= \frac{3^{10}}{3^8} = 3^{10-8}= 3^2</math></li> | ||
- | <li> | + | <li> Write <math>\frac{81 \cdot 32^2 \cdot (2/3)^2}{2^5+2^4}</math> in as simple a form as possible. |
<br/> | <br/> | ||
<br/> | <br/> | ||
Zeile 248: | Zeile 258: | ||
- | == | + | == Rational exponents == |
- | + | What happens if a number is raised to a rational exponent? Do the definitions and the rules we have used above to do calculations still hold? | |
- | + | For instance, since | |
{{Fristående formel||<math>2^{1/2} \cdot 2^{1/2} = 2^{1/2 + 1/2} = 2^1 = 2</math>}} | {{Fristående formel||<math>2^{1/2} \cdot 2^{1/2} = 2^{1/2 + 1/2} = 2^1 = 2</math>}} | ||
- | + | so <math> 2^{1/2} </math> must be the same as <math>\sqrt{2}</math> because <math>\sqrt2</math> is defined as the number which satisfies <math>\sqrt2\cdot\sqrt2 = 2</math> . | |
- | + | Generally, we define | |
<div class="regel"> | <div class="regel"> | ||
Zeile 262: | Zeile 272: | ||
</div> | </div> | ||
- | + | We must assume that <math>a\ge 0</math>, since no real number multiplied by itself can give a negative number. | |
- | + | We also see that, for example, | |
{{Fristående formel||<math>5^{1/3} \cdot 5^{1/3} \cdot 5^{1/3} = 5^{1/3 + 1/3 +1/3} = 5^1 = 5</math>}} | {{Fristående formel||<math>5^{1/3} \cdot 5^{1/3} \cdot 5^{1/3} = 5^{1/3 + 1/3 +1/3} = 5^1 = 5</math>}} | ||
- | + | which means that <math>\,5^{1/3} = \sqrt[\scriptstyle3]{5}\mbox{,}\,</math> which can be generalised to | |
<div class="regel"> | <div class="regel"> | ||
Zeile 273: | Zeile 283: | ||
</div> | </div> | ||
- | + | By combining this definition with one of the previous laws of exponents <math>((a^m)^n=a^{m\cdot n})</math> gives that for all <math>a\ge0</math> it holds that | |
<div class="regel"> | <div class="regel"> | ||
{{Fristående formel||<math>a^{m/n} = (a^m)^{1/n} = \sqrt[\scriptstyle n]{a^m}</math>}} | {{Fristående formel||<math>a^{m/n} = (a^m)^{1/n} = \sqrt[\scriptstyle n]{a^m}</math>}} | ||
- | + | or | |
{{Fristående formel||<math>a^{m/n} = (a^{1/n})^m = (\sqrt[\scriptstyle n]{a}\,)^m\mbox{.} </math>}} | {{Fristående formel||<math>a^{m/n} = (a^{1/n})^m = (\sqrt[\scriptstyle n]{a}\,)^m\mbox{.} </math>}} | ||
Zeile 284: | Zeile 294: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 8''' |
<ol type="a"> | <ol type="a"> | ||
<li><math>27^{1/3} = \sqrt[\scriptstyle 3]{27} | <li><math>27^{1/3} = \sqrt[\scriptstyle 3]{27} | ||
- | = 3\quad</math> | + | = 3\quad</math> as <math>3 \cdot 3 \cdot 3 =27</math></li> |
<li><math>1000^{-1/3} = \frac{1}{1000^{1/3}} | <li><math>1000^{-1/3} = \frac{1}{1000^{1/3}} | ||
= \frac{1}{(10^3)^{1/3}} | = \frac{1}{(10^3)^{1/3}} | ||
Zeile 302: | Zeile 312: | ||
- | == | + | ==Comparison of powers == |
- | + | If we do not have access to calculators and wish to compare the size of powers, one can sometimes achieve this by comparing bases or exponents. | |
- | + | If the base of a power is greater than <math>1</math> then the power is larger the larger the exponent. On the other hand, if the base lies between <math>0</math> and <math>1</math> then the power decreases as the exponent grows. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 9''' |
<ol type="a"> | <ol type="a"> | ||
- | <li><math>\quad 3^{5/6} > 3^{3/4}\quad</math> | + | <li><math>\quad 3^{5/6} > 3^{3/4}\quad</math> as the base <math>3</math> is greater than <math>1</math> and the first exponent <math>5/6</math> is greater than the second exponent <math>3/4</math>.</li> |
- | <li><math>\quad 3^{-3/4} > 3^{-5/6}\quad</math> | + | <li><math>\quad 3^{-3/4} > 3^{-5/6}\quad</math> as the base is greater than <math>1</math> and the exponents satisfy <math> -3/4 > - 5/6</math>.</li> |
- | <li><math> \quad 0{,}3^5 < 0{,}3^4 \quad</math> | + | <li><math> \quad 0{,}3^5 < 0{,}3^4 \quad</math>as the base <math> 0{,}3</math> is between <math>0</math> and <math>1</math> and <math>5 > 4</math>. |
</ol> | </ol> | ||
</div> | </div> | ||
- | + | If a power has a positive exponent, it will get larger the larger the base becomes. The opposite applies if the exponent is negative: that is, the power decreases as the base gets larger. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 10''' |
<ol type="a"> | <ol type="a"> | ||
- | <li><math>\quad 5^{3/2} > 4^{3/2}\quad</math> | + | <li><math>\quad 5^{3/2} > 4^{3/2}\quad</math> as the base <math>5</math> is larger than the base <math>4</math> and both powers have the same positive exponent <math>3/2</math>.</li> |
- | <li><math> \quad 2^{-5/3} > 3^{-5/3}\quad</math> | + | <li><math> \quad 2^{-5/3} > 3^{-5/3}\quad</math> as the bases satisfy <math>2<3</math> and the powers have a negative exponent <math>-5/3</math>.</li> |
</ol> | </ol> | ||
</div> | </div> | ||
- | + | Sometimes powers must be rewritten in order to determine the relative sizes. For example to compare <math>125^2</math> with <math>36^3</math>one can rewrite them as | |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
- | 125^2 = (5^3)^2 = 5^6\quad \text{ | + | 125^2 = (5^3)^2 = 5^6\quad \text{and}\quad 36^3 = (6^2)^3 = 6^6 |
</math>}} | </math>}} | ||
- | + | after which one can see that <math>36^3 > 125^2</math>. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 11''' |
- | + | Determine which of the following pairs of numbers is the greater | |
<ol type="a"> | <ol type="a"> | ||
- | <li><math> 25^{1/3} </math> | + | <li><math> 25^{1/3} </math> and <math> 5^{3/4} </math>. |
<br> | <br> | ||
<br> | <br> | ||
- | + | The base 25 can be rewritten in terms of the second base <math>5</math> by putting <math>25= 5\cdot 5= 5^2</math>. Therefore | |
{{Fristående formel||<math>25^{1/3} = (5^2)^{1/3} = 5^{2 \cdot \frac{1}{3}}= 5^{2/3}</math>}} | {{Fristående formel||<math>25^{1/3} = (5^2)^{1/3} = 5^{2 \cdot \frac{1}{3}}= 5^{2/3}</math>}} | ||
- | + | and then we see that | |
{{Fristående formel||<math>5^{3/4} > 25^{1/3} </math>}} | {{Fristående formel||<math>5^{3/4} > 25^{1/3} </math>}} | ||
- | + | since <math>\frac{3}{4} > \frac{2}{3}</math> and the base <math>5</math> is larger than <math>1</math>.</li> | |
- | <li><math>(\sqrt{8}\,)^5 </math> | + | <li><math>(\sqrt{8}\,)^5 </math> and <math>128</math>. |
<br> | <br> | ||
<br> | <br> | ||
- | + | Both <math>8</math> and <math>128</math> can be written as powers of <math>2</math> | |
{{Fristående formel||<math>\eqalign{8 &= 2\cdot 4 = 2 \cdot 2 \cdot 2 = 2^3\mbox{,}\\ 128 &= 2\cdot 64 = 2\cdot 2\cdot 32 = 2\cdot 2\cdot 2\cdot 16 = 2\cdot 2\cdot 2\cdot 2\cdot 8\\ &= 2\cdot 2\cdot 2\cdot 2\cdot 2^3 = 2^7\mbox{.}}</math>}} | {{Fristående formel||<math>\eqalign{8 &= 2\cdot 4 = 2 \cdot 2 \cdot 2 = 2^3\mbox{,}\\ 128 &= 2\cdot 64 = 2\cdot 2\cdot 32 = 2\cdot 2\cdot 2\cdot 16 = 2\cdot 2\cdot 2\cdot 2\cdot 8\\ &= 2\cdot 2\cdot 2\cdot 2\cdot 2^3 = 2^7\mbox{.}}</math>}} | ||
- | + | This means that | |
{{Fristående formel||<math>\begin{align*} | {{Fristående formel||<math>\begin{align*} | ||
Zeile 370: | Zeile 380: | ||
\end{align*}</math>}} | \end{align*}</math>}} | ||
- | + | and thus | |
{{Fristående formel||<math>(\sqrt{8}\,)^5 > 128 </math>}} | {{Fristående formel||<math>(\sqrt{8}\,)^5 > 128 </math>}} | ||
- | + | because <math>\frac{15}{2} > \frac{14}{2}</math> and the base <math>2</math> is greater than <math>1</math>.</li> | |
- | <li><math> (8^2)^{1/5} </math> | + | <li><math> (8^2)^{1/5} </math> and <math> (\sqrt{27}\,)^{4/5}</math>. |
<br> | <br> | ||
<br> | <br> | ||
- | + | Since <math>8=2^3</math> and <math>27=3^3</math> a first step can be to simplify and write the numbers as powers of <math>2</math> and <math>3</math> respectively, | |
{{Fristående formel||<math>\begin{align*} | {{Fristående formel||<math>\begin{align*} | ||
Zeile 390: | Zeile 400: | ||
\end{align*}</math>}} | \end{align*}</math>}} | ||
- | + | Now we see that | |
{{Fristående formel||<math>(\sqrt{27}\,)^{4/5} > (8^2)^{1/5} </math>}} | {{Fristående formel||<math>(\sqrt{27}\,)^{4/5} > (8^2)^{1/5} </math>}} | ||
- | + | because <math> 3>2</math> and exponent <math>\frac{6}{5}</math> is positive. | |
- | <li><math> 3^{1/3} </math> | + | <li><math> 3^{1/3} </math> and <math> 2^{1/2}</math> |
<br> | <br> | ||
<br> | <br> | ||
- | + | We rewrite the exponents so they have a common denominator | |
- | {{Fristående formel||<math>\frac{1}{3} = \frac{2}{6} \quad</math> | + | {{Fristående formel||<math>\frac{1}{3} = \frac{2}{6} \quad</math> and <math>\quad \frac{1}{2} = \frac{3}{6}</math>.}} |
- | + | Then we have that | |
{{Fristående formel||<math>\begin{align*} | {{Fristående formel||<math>\begin{align*} | ||
Zeile 410: | Zeile 420: | ||
\end{align*}</math>}} | \end{align*}</math>}} | ||
- | + | and we see that | |
{{Fristående formel||<math> 3^{1/3} > 2^{1/2} </math>}} | {{Fristående formel||<math> 3^{1/3} > 2^{1/2} </math>}} | ||
- | + | because <math> 9>8</math> and the exponent <math>1/6</math> is positive.</li> | |
</ol> | </ol> | ||
</div> | </div> | ||
- | [[1.3 Övningar| | + | [[1.3 Övningar|Exercises]] |
- | <div class="inforuta"> | + | <div class="inforuta" style="width:580px;"> |
- | ''' | + | '''Study advice''' |
- | ''' | + | '''Basic and final tests''' |
- | + | After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge. | |
- | ''' | + | '''Keep in mind that:''' |
- | + | The number raised to the power 0, is always 1, if the number (the base) is not 0. | |
- | ''' | + | '''Reviews''' |
- | + | For those of you who want to deepen your studies or need more detailed explanations consider the following references | |
- | [http://en.wikipedia.org/wiki/Exponent | + | [http://en.wikipedia.org/wiki/Exponent Learn more about powers in the English Wikipedi] |
- | [http://primes.utm.edu/ | + | [http://primes.utm.edu/ What is the greatest prime number? Read more at The Prime Page] |
- | ''' | + | '''Useful web sites''' |
- | [http://www.ltcconline.net/greenl/java/BasicAlgebra/ExponentRules/ExponentRules.html | + | [http://www.ltcconline.net/greenl/java/BasicAlgebra/ExponentRules/ExponentRules.html Here you can practise the laws of exponents] |
</div> | </div> |
Aktuelle Version
Theory | Exercises |
Content:
- Positive integer exponent
- Negative integer exponent
- Rational exponents
- Laws of exponents
Learning outcomes:
After this section, you will have learned to:
- Recognise the concepts of base and exponent.
- Calculate integer power expressions
- Use the laws of exponents to simplify expressions containing powers.
- Know when the laws of exponents are applicable (positive basis).
- Determine which of two powers is the larger based on a comparison of the base / exponent.
Integer exponents
We use the multiplication symbol as a short-hand for repeated addition of the same number, for example,
\displaystyle 4 + 4 + 4 + 4 + 4 = 4 \cdot 5\mbox{.} |
In a similar way we use exponentials as a short-hand for repeated multiplication of the same number:
\displaystyle 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 = 4^5\mbox{.} |
The 4 is called the base of the power, and the 5 is its exponent.
Example 1
- \displaystyle 5^3 = 5 \cdot 5 \cdot 5 = 125
- \displaystyle 10^5 = 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 100 000
- \displaystyle 0{,}1^3 = 0{,}1 \cdot 0{,}1 \cdot 0{,}1 = 0{,}001
- \displaystyle (-2)^4 = (-2) \cdot (-2) \cdot (-2) \cdot (-2)= 16, but \displaystyle -2^4 = -(2^4) = - (2 \cdot 2 \cdot 2 \cdot 2) = -16
- \displaystyle 2\cdot 3^2 = 2 \cdot 3 \cdot 3 = 18, but \displaystyle (2\cdot3)^2 = 6^2 = 36
Example 2
- \displaystyle \left(\displaystyle\frac{2}{3}\right)^3 = \displaystyle\frac{2}{3}\cdot \displaystyle\frac{2}{3} \cdot \displaystyle\frac{2}{3} = \displaystyle\frac{2^3}{3^3} = \displaystyle\frac{8}{27}
- \displaystyle (2\cdot 3)^4
= (2\cdot 3)\cdot(2\cdot 3)\cdot(2\cdot 3)\cdot(2\cdot 3)
\displaystyle \phantom{(2\cdot 3)^4}{} = 2\cdot 2\cdot 2\cdot 2\cdot 3\cdot 3\cdot 3\cdot 3 = 2^4 \cdot 3^4 = 1296
The last example can be generalised to two useful rules when calculating powers:
\displaystyle \left(\displaystyle\frac{a}{b}\right)^m = \displaystyle\frac{a^m}{b^m} \quad \mbox{and}\quad (ab)^m = a^m b^m\,\mbox{.} |
Laws of exponents
There are a few more rules coming from the definition of power which are useful when doing calculations.You can see for example that
\displaystyle 2^3 \cdot 2^5 = \underbrace{\,2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 3\ {\rm factors }} \cdot \underbrace{\,2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 5\ {\rm factors }} = \underbrace{\,2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ (3 + 5)\ {\rm factors}} = 2^{3+5} = 2^8 |
which generally can be expressed as
\displaystyle a^m \cdot a^n = a^{m+n}\mbox{.} |
There is also a useful simplification rule for division of powers which have the same base.
\displaystyle \frac{2^7}{2^3}=\displaystyle\frac{ 2\cdot 2\cdot 2\cdot 2\cdot \not{2}\cdot \not{2}\cdot \not{2} }{ \not{2}\cdot \not{2}\cdot \not{2}} = 2^{7-3}=2^4\mbox{.} |
The general rule is
\displaystyle \displaystyle\frac{a^m}{a^n}= a^{m-n}\mbox{.} |
For the case when the base itself is a power one has another useful rule. We see that
\displaystyle (5^2)^3 = 5^2 \cdot 5^2 \cdot 5^2 = \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm factors}} \cdot \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm factors}} \cdot \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{2\ {\rm factors}} = \underbrace{\,5\cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm times}\ 2\ {\rm factors}} = 5^{2 \cdot 3} = 5^6\mbox{} |
and
\displaystyle (5^3)^2 = 5^3\cdot5^3= \underbrace{\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm factors}} \cdot \underbrace{\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm factors}} = \underbrace{\,5\cdot 5 \cdot 5\,\cdot\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{2\ {\rm times}\ 3\ {\rm factors}}=5^{3\cdot2}=5^6\mbox{.} |
Generally, this can be written
\displaystyle (a^m)^n = a^{m \cdot n}\mbox{.} |
Example 3
- \displaystyle 2^9 \cdot 2^{14} = 2^{9+14} = 2^{23}
- \displaystyle 5\cdot5^3 = 5^1\cdot5^3 = 5^{1+3} = 5^4
- \displaystyle 3^2 \cdot 3^3 \cdot 3^4 = 3^{2+3+4} = 3^9
- \displaystyle 10^5 \cdot 1000 = 10^5 \cdot 10^3 = 10^{5+3} = 10^8
Example 4
- \displaystyle \frac{3^{100}}{3^{98}} = 3^{100-98} = 3^2
- \displaystyle \frac{7^{10}}{7} = \frac{7^{10}}{7^1} = 7^{10-1} = 7^9
If a fraction has the same expression for the exponent both in the numerator and the denominator we can simplify in two ways:
\displaystyle \frac{5^3}{5^3} = 5^{3-3} = 5^0\quad\text{as well as}\quad \frac{5^3}{5^3} = \frac{ 5 \cdot 5 \cdot 5 }{ 5 \cdot 5 \cdot 5 } = \frac{125}{125} = 1\mbox{.} |
The only way for the rules of exponents to agree is to make the
following but natural definition that for all non zero a one has that
\displaystyle a^0 = 1\mbox{.} |
We can also run into examples where the exponent in the denominator is greater than that in the numerator. We can have, for example,
\displaystyle \frac{3^4}{3^6} = 3^{4-6} = 3^{-2}\quad\text{and}\quad \frac{3^4}{3^6} = \frac{\not{3} \cdot \not{3} \cdot \not{3} \cdot \not{3} }{ \not{3} \cdot \not{3} \cdot \not{3} \cdot \not{3} \cdot 3 \cdot 3} = \frac{1}{3 \cdot 3} = \frac{1}{3^2}\mbox{.} |
We see that it is necessary to assume that the negative exponent implies that
\displaystyle 3^{-2} = \frac{1}{3^2}\mbox{.} |
The general definition of negative exponents is to interpret negative exponents
of all non zero numbers a as follows
\displaystyle a^{-n} = \frac{1}{a^n}\mbox{.} |
Example 5
- \displaystyle \frac{7^{1293}}{7^{1293}} = 7^{1293 - 1293} = 7^0 = 1
- \displaystyle 3^7 \cdot 3^{-9} \cdot 3^4 = 3^{7+(-9)+4} = 3^2
- \displaystyle 0{,}001 = \frac{1}{1000} = \frac{1}{10^3} = 10^{-3}
- \displaystyle 0{,}008 = \frac{8}{1000} = \frac{1}{125} = \frac{1}{5^3} = 5^{-3}
- \displaystyle \left(\frac{2}{3}\right)^{-1} = \frac{1}{\displaystyle\left(\frac{2}{3}\right)^1} = 1\cdot \frac{3}{2} = \frac{3}{2}
- \displaystyle \left(\frac{1}{3^2}\right)^{-3} = (3^{-2})^{-3} = 3^{(-2)\cdot(-3)}=3^6
- \displaystyle 0.01^5 = (10^{-2})^5 = 10^{-2 \cdot 5} = 10^{-10}
If the base of a power is \displaystyle -1 then the expression will simplify to either \displaystyle -1 or \displaystyle +1 depending on the value of the exponent
\displaystyle \eqalign{(-1)^1 &= -1\cr (-1)^2 &= (-1)\cdot(-1) = +1\cr (-1)^3 &= (-1)\cdot(-1)^2 = (-1)\cdot 1 = -1\cr (-1)^4 &= (-1)\cdot(-1)^3 = (-1)\cdot (-1) = +1\cr \quad\hbox{etc.}} |
The rule is that \displaystyle (-1)^n is equal to\displaystyle -1 if \displaystyle n is odd and equal to \displaystyle +1 if \displaystyle n is even .
Example 6
- \displaystyle (-1)^{56} = 1\quad as \displaystyle 56 is an even number
- \displaystyle \frac{1}{(-1)^{11}} = \frac{1}{-1} = -1\quad because 11 is an odd number
- \displaystyle \frac{(-2)^{127}}{2^{130}} = \frac{(-1 \cdot 2)^{127}}{2^{130}} = \frac{(-1)^{127} \cdot 2^{127}}{2^{130}} = \frac{-1 \cdot 2^{127}}{2^{130}} \displaystyle \phantom{\frac{(-2)^{127}}{2^{130}}}{} = - 2^{127-130} = -2^{-3} = - \frac{1}{2^3} = - \frac{1}{8}
Changing the base
A point to observe is that when simplifying expressions try, if possible, to combine powers by choosing the same base. This often involves selecting 2, 3 or 5 as a base and, therefore, it is a good idea to learn to recognize the powers of these numbers, such as
\displaystyle 4=2^2,\;\; 8=2^3,\;\; 16=2^4,\;\; 32=2^5,\;\; 64=2^6,\;\; 128=2^7,\;\ldots |
\displaystyle 9=3^2,\;\; 27=3^3,\;\; 81=3^4,\;\; 243=3^5,\;\ldots |
\displaystyle 25=5^2,\;\; 125=5^3,\;\; 625=5^4,\;\ldots |
But even
\displaystyle \frac{1}{4}=\frac{1}{2^2} = 2^{-2},\;\; \frac{1}{8}=\frac{1}{2^3}=2^{-3},\;\; \frac{1}{16}=\frac{1}{2^4}=2^{-4},\;\ldots |
\displaystyle \frac{1}{9}=\frac{1}{3^2}=3^{-2},\;\; \frac{1}{27}=\frac{1}{3^3}=3^{-3},\;\ldots |
\displaystyle \frac{1}{25}=\frac{1}{5^2}=5^{-2},\;\; \frac{1}{125}=\frac{1}{5^3}=5^{-3},\;\ldots |
and so on.
Example 7
- Write \displaystyle \ 8^3 \cdot 4^{-2} \cdot 16\ as a power with base 2
- \displaystyle 8^3 \cdot 4^{-2} \cdot 16 = (2^3)^3 \cdot (2^2)^{-2} \cdot 2^4 = 2^{3 \cdot 3} \cdot 2^{2 \cdot (-2)} \cdot 2^4
- \displaystyle \qquad\quad{}= 2^9 \cdot 2^{-4} \cdot 2^4 = 2^{9-4+4} =2^9
- Write \displaystyle \ \frac{27^2 \cdot (1/9)^{-2}}{81^2}\ as a power with base 3.
- \displaystyle \frac{27^2 \cdot (1/9)^{-2}}{81^2} = \frac{(3^3)^2 \cdot (1/3^2)^{-2}}{(3^4)^2} = \frac{(3^3)^2 \cdot (3^{-2})^{-2}}{(3^4)^2}
- \displaystyle \qquad\quad{} = \frac{3^{3 \cdot 2} \cdot 3^{(-2) \cdot (-2)}}{3^{4 \cdot 2}} = \frac{3^6\cdot 3^4}{3^8} = \frac{3^{6 + 4}}{3^8}= \frac{3^{10}}{3^8} = 3^{10-8}= 3^2
- Write \displaystyle \frac{81 \cdot 32^2 \cdot (2/3)^2}{2^5+2^4} in as simple a form as possible.
- \displaystyle \frac{81 \cdot 32^2 \cdot (2/3)^2}{2^5+2^4} = \frac{3^4 \cdot (2^5)^2 \cdot \displaystyle\frac{2^2}{3^2}}{2^{4+1}+2^4} = \frac{3^4 \cdot 2^{5 \cdot 2} \cdot \displaystyle\frac{2^2}{3^2}}{2^4 \cdot 2^1 +2^4} = \frac{3^4 \cdot 2^{10} \cdot \displaystyle\frac{2^2}{3^2}}{2^4 \cdot(2^1+1)}
- \displaystyle \qquad\quad{} = \frac{ \displaystyle\frac{3^4 \cdot 2^{10} \cdot 2^2}{3^2}}{2^4 \cdot 3} = \frac{ 3^4 \cdot 2^{10} \cdot 2^2 }{3^2 \cdot 2^4 \cdot 3 } = 3^{4-2-1} \cdot 2^{10+2-4} = 3^1 \cdot 2^8= 3\cdot 2^8
Rational exponents
What happens if a number is raised to a rational exponent? Do the definitions and the rules we have used above to do calculations still hold?
For instance, since
\displaystyle 2^{1/2} \cdot 2^{1/2} = 2^{1/2 + 1/2} = 2^1 = 2 |
so \displaystyle 2^{1/2} must be the same as \displaystyle \sqrt{2} because \displaystyle \sqrt2 is defined as the number which satisfies \displaystyle \sqrt2\cdot\sqrt2 = 2 .
Generally, we define
\displaystyle a^{1/2} = \sqrt{a}\mbox{.} |
We must assume that \displaystyle a\ge 0, since no real number multiplied by itself can give a negative number.
We also see that, for example,
\displaystyle 5^{1/3} \cdot 5^{1/3} \cdot 5^{1/3} = 5^{1/3 + 1/3 +1/3} = 5^1 = 5 |
which means that \displaystyle \,5^{1/3} = \sqrt[\scriptstyle3]{5}\mbox{,}\, which can be generalised to
\displaystyle a^{1/n} = \sqrt[\scriptstyle n]{a}\mbox{.} |
By combining this definition with one of the previous laws of exponents \displaystyle ((a^m)^n=a^{m\cdot n}) gives that for all \displaystyle a\ge0 it holds that
\displaystyle a^{m/n} = (a^m)^{1/n} = \sqrt[\scriptstyle n]{a^m} |
or
\displaystyle a^{m/n} = (a^{1/n})^m = (\sqrt[\scriptstyle n]{a}\,)^m\mbox{.} |
Example 8
- \displaystyle 27^{1/3} = \sqrt[\scriptstyle 3]{27} = 3\quad as \displaystyle 3 \cdot 3 \cdot 3 =27
- \displaystyle 1000^{-1/3} = \frac{1}{1000^{1/3}} = \frac{1}{(10^3)^{1/3}} = \frac{1}{10^{3 \cdot \frac{1}{3}}} = \frac{1}{10^1} = \frac{1}{10}
- \displaystyle \frac{1}{\sqrt{8}} = \frac{1}{8^{1/2}} = \frac{1}{(2^3)^{1/2}} = \frac{1}{2^{3/2}} = 2^{-3/2}
- \displaystyle \frac{1}{16^{-1/3}} = \frac{1}{(2^4)^{-1/3}} = \frac{1}{2^{-4/3}} = 2^{-(-4/3)}= 2^{4/3}
Comparison of powers
If we do not have access to calculators and wish to compare the size of powers, one can sometimes achieve this by comparing bases or exponents.
If the base of a power is greater than \displaystyle 1 then the power is larger the larger the exponent. On the other hand, if the base lies between \displaystyle 0 and \displaystyle 1 then the power decreases as the exponent grows.
Example 9
- \displaystyle \quad 3^{5/6} > 3^{3/4}\quad as the base \displaystyle 3 is greater than \displaystyle 1 and the first exponent \displaystyle 5/6 is greater than the second exponent \displaystyle 3/4.
- \displaystyle \quad 3^{-3/4} > 3^{-5/6}\quad as the base is greater than \displaystyle 1 and the exponents satisfy \displaystyle -3/4 > - 5/6.
- \displaystyle \quad 0{,}3^5 < 0{,}3^4 \quadas the base \displaystyle 0{,}3 is between \displaystyle 0 and \displaystyle 1 and \displaystyle 5 > 4.
If a power has a positive exponent, it will get larger the larger the base becomes. The opposite applies if the exponent is negative: that is, the power decreases as the base gets larger.
Example 10
- \displaystyle \quad 5^{3/2} > 4^{3/2}\quad as the base \displaystyle 5 is larger than the base \displaystyle 4 and both powers have the same positive exponent \displaystyle 3/2.
- \displaystyle \quad 2^{-5/3} > 3^{-5/3}\quad as the bases satisfy \displaystyle 2<3 and the powers have a negative exponent \displaystyle -5/3.
Sometimes powers must be rewritten in order to determine the relative sizes. For example to compare \displaystyle 125^2 with \displaystyle 36^3one can rewrite them as
\displaystyle
125^2 = (5^3)^2 = 5^6\quad \text{and}\quad 36^3 = (6^2)^3 = 6^6 |
after which one can see that \displaystyle 36^3 > 125^2.
Example 11
Determine which of the following pairs of numbers is the greater
- \displaystyle 25^{1/3} and \displaystyle 5^{3/4} .
The base 25 can be rewritten in terms of the second base \displaystyle 5 by putting \displaystyle 25= 5\cdot 5= 5^2. Therefore\displaystyle 25^{1/3} = (5^2)^{1/3} = 5^{2 \cdot \frac{1}{3}}= 5^{2/3} and then we see that
\displaystyle 5^{3/4} > 25^{1/3} - \displaystyle (\sqrt{8}\,)^5 and \displaystyle 128.
Both \displaystyle 8 and \displaystyle 128 can be written as powers of \displaystyle 2\displaystyle \eqalign{8 &= 2\cdot 4 = 2 \cdot 2 \cdot 2 = 2^3\mbox{,}\\ 128 &= 2\cdot 64 = 2\cdot 2\cdot 32 = 2\cdot 2\cdot 2\cdot 16 = 2\cdot 2\cdot 2\cdot 2\cdot 8\\ &= 2\cdot 2\cdot 2\cdot 2\cdot 2^3 = 2^7\mbox{.}} This means that
\displaystyle \begin{align*} (\sqrt{8}\,)^5 &= (8^{1/2})^5 = (8)^{5/2} = (2^3)^{5/2} = 2^{3\cdot\frac{5}{2}}= 2^{15/2}\\ 128 &= 2^7 = 2^{14/2} \end{align*}
and thus
\displaystyle (\sqrt{8}\,)^5 > 128 - \displaystyle (8^2)^{1/5} and \displaystyle (\sqrt{27}\,)^{4/5}.
Since \displaystyle 8=2^3 and \displaystyle 27=3^3 a first step can be to simplify and write the numbers as powers of \displaystyle 2 and \displaystyle 3 respectively,\displaystyle \begin{align*} (8^2)^{1/5} &= (8)^{2/5} = (2^3)^{2/5} = 2^{3\cdot \frac{2}{5}} = 2^{6/5}\mbox{,}\\ (\sqrt{27}\,)^{4/5} &= (27^{1/2})^{4/5} = 27^{ \frac{1}{2} \cdot \frac{4}{5}} = 27^{2/5} = (3^3)^{2/5} = 3^{3 \cdot \frac{2}{5}} = 3^{6/5}\mbox{.}
\end{align*}
Now we see that
\displaystyle (\sqrt{27}\,)^{4/5} > (8^2)^{1/5} because \displaystyle 3>2 and exponent \displaystyle \frac{6}{5} is positive.
- \displaystyle 3^{1/3} and \displaystyle 2^{1/2}
We rewrite the exponents so they have a common denominator\displaystyle \frac{1}{3} = \frac{2}{6} \quad and \displaystyle \quad \frac{1}{2} = \frac{3}{6}. Then we have that
\displaystyle \begin{align*} 3^{1/3} &= 3^{2/6} = (3^2)^{1/6} = 9^{1/6}\\ 2^{1/2} &= 2^{3/6} = (2^3)^{1/6} = 8^{1/6}
\end{align*}
and we see that
\displaystyle 3^{1/3} > 2^{1/2}
Study advice
Basic and final tests
After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.
Keep in mind that:
The number raised to the power 0, is always 1, if the number (the base) is not 0.
Reviews
For those of you who want to deepen your studies or need more detailed explanations consider the following references
Learn more about powers in the English Wikipedi
What is the greatest prime number? Read more at The Prime Page
Useful web sites