4.1 Övningar
Aus Förberedande kurs i matematik 1
(Translated links into English) |
|||
(Der Versionsvergleich bezieht 25 dazwischen liegende Versionen mit ein.) | |||
Zeile 2: | Zeile 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #000" width="5px" | | | style="border-bottom:1px solid #000" width="5px" | | ||
- | {{ | + | {{Ej vald flik|[[4.1 Vinklar och cirklar|Theory]]}} |
- | {{ | + | {{Vald flik|[[4.1 Övningar|Exercises]]}} |
| style="border-bottom:1px solid #000" width="100%"| | | style="border-bottom:1px solid #000" width="100%"| | ||
|} | |} | ||
- | === | + | ===Exercise 4.1:1=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Write in degrees and radians | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
- | |width="50%" | <math>\displaystyle \frac{1}{4} \textrm{ | + | |width="50%" | <math>\displaystyle \frac{1}{4} \textrm{ revolution} </math> |
|b) | |b) | ||
- | |width="50%" | <math>\displaystyle \frac{3}{8} \textrm{ | + | |width="50%" | <math>\displaystyle \frac{3}{8} \textrm{ revolution}</math> |
|- | |- | ||
|c) | |c) | ||
- | |width="50%" | <math>-\displaystyle \frac{2}{3}\textrm{ | + | |width="50%" | <math>-\displaystyle \frac{2}{3}\textrm{ revolution}</math> |
|d) | |d) | ||
- | |width="50%" | <math>\displaystyle \frac{97}{12} \textrm{ | + | |width="50%" | <math>\displaystyle \frac{97}{12} \textrm{ revolution} </math> |
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Svar 4.1:1|Solution |Lösning 4.1:1}} |
+ | ===Exrecise 4.1:2=== | ||
+ | <div class="ovning"> | ||
+ | Transform to radians | ||
+ | {| width="100%" cellspacing="10px" | ||
+ | |a) | ||
+ | |width="25%" | <math>45^\circ</math> | ||
+ | |b) | ||
+ | |width="25%" | <math>135^\circ</math> | ||
+ | |c) | ||
+ | |width="25%" | <math>-63^\circ</math> | ||
+ | |d) | ||
+ | |width="25%" | <math>270^\circ</math> | ||
+ | |} | ||
+ | </div>{{#NAVCONTENT:Answer|Svar 4.1:2|Solution |Lösning 4.1:2}} | ||
+ | |||
+ | ===Exercise 4.1:3=== | ||
+ | <div class="ovning"> | ||
+ | Determine the length of the side marked <math>\,x\,\mbox{.}</math> | ||
+ | {| width="100%" cellspacing="10px" | ||
+ | |a) | ||
+ | |width="33%" | | ||
{{:4.1 - Figur - Rätvinklig triangel med sidor 30, 40 och x}} | {{:4.1 - Figur - Rätvinklig triangel med sidor 30, 40 och x}} | ||
+ | |b) | ||
+ | |width="33%" | {{:4.1 - Figur - Rätvinklig triangel med sidor 12, x och 13}} | ||
+ | |c) | ||
+ | |width="33%" | {{:4.1 - Figur - Rätvinklig triangel med sidor 8, x och 17}} | ||
+ | |} | ||
+ | </div>{{#NAVCONTENT:Answer|Svar 4.1:3|Solution a|Lösning 4.1:3a|Solution b|Lösning 4.1:3b|Solution c|Lösning 4.1:3c}} | ||
- | {{:4.1 - | + | ===Exercise 4.1:4=== |
+ | <div class="ovning"> | ||
+ | {| width="100%" cellspacing="10px" | ||
+ | |a) | ||
+ | |width="100%" | Determine the distance between the points (1,1) and (5,4). | ||
+ | |- | ||
+ | |b) | ||
+ | |width="100%" | Determine the distance between the points(-2,5) and (3,-1). | ||
+ | |- | ||
+ | |c) | ||
+ | |width="100%" | Find the point on the x-axis which lies as far from the point (3,3) as from (5,1). | ||
+ | |} | ||
+ | </div>{{#NAVCONTENT:Answer|Svar 4.1:4|Solution a|Lösning 4.1:4a|Solution b|Lösning 4.1:4b|Solution c|Lösning 4.1:4c}} | ||
+ | |||
+ | ===Exercise 4.1:5=== | ||
+ | <div class="ovning"> | ||
+ | {| width="100%" cellspacing="10px" | ||
+ | |a) | ||
+ | |width="100%" | Determine the equation of a circle having its centre at (1,2) and radius 2. | ||
+ | |- | ||
+ | |b) | ||
+ | |width="100%" | Determine the equation of a circle having its centre at (2,-1) and which contains the point (-1,1). | ||
+ | |} | ||
+ | </div>{{#NAVCONTENT:Answer|Svar 4.1:5|Solution a|Lösning 4.1:5a|Solution b|Lösning 4.1:5b}} | ||
+ | |||
+ | ===Exercise 4.1:6=== | ||
+ | <div class="ovning"> | ||
+ | Sketch the following circles | ||
+ | {| width="100%" cellspacing="10px" | ||
+ | |a) | ||
+ | |width="50%" | <math>x^2+y^2=9</math> | ||
+ | |b) | ||
+ | |width="50%" | <math>(x-1)^2+(y-2)^2=3</math> | ||
+ | |- | ||
+ | |c) | ||
+ | |width="50%" | <math>(3x-1)^2+(3y+7)^2=10</math> | ||
+ | |} | ||
+ | </div>{{#NAVCONTENT:Answer|Svar 4.1:6|Solution a|Lösning 4.1:6a|Solution b|Lösning 4.1:6b|Solution c|Lösning 4.1:6c}} | ||
+ | |||
+ | ===Exercise 4.1:7=== | ||
+ | <div class="ovning"> | ||
+ | Sketch the following circles | ||
+ | {| width="100%" cellspacing="10px" | ||
+ | |a) | ||
+ | |width="50%" | <math>x^2+2x+y^2-2y=1</math> | ||
+ | |b) | ||
+ | |width="50%" | <math>x^2+y^2+4y=0</math> | ||
+ | |- | ||
+ | |c) | ||
+ | |width="50%" | <math>x^2-2x+y^2+6y=-3</math> | ||
+ | |d) | ||
+ | |width="50%" | <math>x^2-2x+y^2+2y=-2</math> | ||
+ | |} | ||
+ | </div>{{#NAVCONTENT:Answer|Svar 4.1:7|Solution a|Lösning 4.1:7a|Solution b|Lösning 4.1:7b|Solution c|Lösning 4.1:7c|Solution d|Lösning 4.1:7d}} | ||
+ | |||
+ | ===Exercise 4.1:8=== | ||
+ | <div class="ovning"> | ||
+ | How many revolutions does a wheel of radius 50 cm make when it rolls 10m? | ||
+ | </div>{{#NAVCONTENT:Answer|Svar 4.1:8|Solution|Lösning 4.1:8}} | ||
+ | |||
+ | ===Exercise 4.1:9=== | ||
+ | <div class="ovning"> | ||
+ | On a clock, the second hand is 8 cm long. How large an area does it sweep through in 10 seconds? | ||
+ | </div>{{#NAVCONTENT:Answer|Svar 4.1:9|Solution|Lösning 4.1:9}} | ||
+ | |||
+ | |||
+ | ===Exercise 4.1:10=== | ||
+ | <div class="ovning"> | ||
+ | A washing line of length 5.4 m hangs between two vertical trees that are at a distance of 4.8 m from each other. One end of the line is fixed 0.6 m higher than the other, and a jacket hangs from a | ||
+ | hanger 1.2 m from the tree where the line has its lower point of attachment. Determine how far below the | ||
+ | lower attachement point the hanger is hanging. (That is, the distance <math>\,x\,</math> in the figure). | ||
- | {{:4.1 - Figur - Rätvinklig triangel med sidor 8, x och 17}} | ||
- | {{:4.1 - Figur - Tvättlina med kavaj på galge}} | + | <center> {{:4.1 - Figur - Tvättlina med kavaj på galge}} </center> |
+ | </div>{{#NAVCONTENT:Answer|Svar 4.1:10|Solution|Lösning 4.1:10}} |
Aktuelle Version
Theory | Exercises |
Exercise 4.1:1
Write in degrees and radians
a) | \displaystyle \displaystyle \frac{1}{4} \textrm{ revolution} | b) | \displaystyle \displaystyle \frac{3}{8} \textrm{ revolution} |
c) | \displaystyle -\displaystyle \frac{2}{3}\textrm{ revolution} | d) | \displaystyle \displaystyle \frac{97}{12} \textrm{ revolution} |
Exrecise 4.1:2
Transform to radians
a) | \displaystyle 45^\circ | b) | \displaystyle 135^\circ | c) | \displaystyle -63^\circ | d) | \displaystyle 270^\circ |
Exercise 4.1:3
Determine the length of the side marked \displaystyle \,x\,\mbox{.}
a) |
| b) |
| c) |
|
Exercise 4.1:4
a) | Determine the distance between the points (1,1) and (5,4). |
b) | Determine the distance between the points(-2,5) and (3,-1). |
c) | Find the point on the x-axis which lies as far from the point (3,3) as from (5,1). |
Exercise 4.1:5
a) | Determine the equation of a circle having its centre at (1,2) and radius 2. |
b) | Determine the equation of a circle having its centre at (2,-1) and which contains the point (-1,1). |
Exercise 4.1:6
Sketch the following circles
a) | \displaystyle x^2+y^2=9 | b) | \displaystyle (x-1)^2+(y-2)^2=3 |
c) | \displaystyle (3x-1)^2+(3y+7)^2=10 |
Exercise 4.1:7
Sketch the following circles
a) | \displaystyle x^2+2x+y^2-2y=1 | b) | \displaystyle x^2+y^2+4y=0 |
c) | \displaystyle x^2-2x+y^2+6y=-3 | d) | \displaystyle x^2-2x+y^2+2y=-2 |
Exercise 4.1:8
How many revolutions does a wheel of radius 50 cm make when it rolls 10m?
Exercise 4.1:9
On a clock, the second hand is 8 cm long. How large an area does it sweep through in 10 seconds?
Exercise 4.1:10
A washing line of length 5.4 m hangs between two vertical trees that are at a distance of 4.8 m from each other. One end of the line is fixed 0.6 m higher than the other, and a jacket hangs from a hanger 1.2 m from the tree where the line has its lower point of attachment. Determine how far below the lower attachement point the hanger is hanging. (That is, the distance \displaystyle \,x\, in the figure).