3.4 Övningar
Aus Förberedande kurs i matematik 1
(Unterschied zwischen Versionen)
(Ny sida: __NOTOC__ {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | style="border-bottom:1px solid #000" width="5px" | {{Mall:Ej vald flik|[[3.4 Logaritmekvationer|Teo...) |
(Translated links into English) |
||
(Der Versionsvergleich bezieht 5 dazwischen liegende Versionen mit ein.) | |||
Zeile 2: | Zeile 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #000" width="5px" | | | style="border-bottom:1px solid #000" width="5px" | | ||
- | {{ | + | {{Ej vald flik|[[3.4 Logaritmekvationer|Theory]]}} |
- | {{ | + | {{Vald flik|[[3.4 Övningar|Exercises]]}} |
| style="border-bottom:1px solid #000" width="100%"| | | style="border-bottom:1px solid #000" width="100%"| | ||
|} | |} | ||
- | === | + | ===Exercise 3.4:1=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Solve the equation | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Zeile 19: | Zeile 19: | ||
|width="33%" | <math>3e^x=7\cdot2^x</math> | |width="33%" | <math>3e^x=7\cdot2^x</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Svar 3.4:1|Solution a|Lösning 3.4:1a|Solution b|Lösning 3.4:1b|Solution c|Lösning 3.4:1c}} |
+ | |||
+ | ===Exercise 3.4:2=== | ||
+ | <div class="ovning"> | ||
+ | Solve the equation | ||
+ | {| width="100%" cellspacing="10px" | ||
+ | |a) | ||
+ | |width="33%" | <math>2^{\scriptstyle x^2-2}=1</math> | ||
+ | |b) | ||
+ | |width="33%" | <math>e^{2x}+e^x=4</math> | ||
+ | |c) | ||
+ | |width="33%" | <math>3e^{x^2}=2^x</math> | ||
+ | |} | ||
+ | </div>{{#NAVCONTENT:Answer|Svar 3.4:2|Solution a|Lösning 3.4:2a|Solution b|Lösning 3.4:2b|Solution c|Lösning 3.4:2c}} | ||
+ | |||
+ | ===Exercise 3.4:3=== | ||
+ | <div class="ovning"> | ||
+ | Solve the equation | ||
+ | {| width="100%" cellspacing="10px" | ||
+ | |a) | ||
+ | |width="50%" | <math>2^{-x^2}=2e^{2x}</math> | ||
+ | |b) | ||
+ | |width="50%" | <math>\ln{(x^2+3x)}=\ln{(3x^2-2x)}</math> | ||
+ | |- | ||
+ | |c) | ||
+ | |width="50%" | <math>\ln{x}+\ln{(x+4)}=\ln{(2x+3)}</math> | ||
+ | |} | ||
+ | </div>{{#NAVCONTENT:Answer|Svar 3.4:3|Solution a|Lösning 3.4:3a|Solution b|Lösning 3.4:3b|Solution c|Lösning 3.4:3c}} |
Aktuelle Version
Theory | Exercises |
Exercise 3.4:1
Solve the equation
a) | \displaystyle e^x=13 | b) | \displaystyle 13e^x=2\cdot3^{-x} | c) | \displaystyle 3e^x=7\cdot2^x |
Exercise 3.4:2
Solve the equation
a) | \displaystyle 2^{\scriptstyle x^2-2}=1 | b) | \displaystyle e^{2x}+e^x=4 | c) | \displaystyle 3e^{x^2}=2^x |
Exercise 3.4:3
Solve the equation
a) | \displaystyle 2^{-x^2}=2e^{2x} | b) | \displaystyle \ln{(x^2+3x)}=\ln{(3x^2-2x)} |
c) | \displaystyle \ln{x}+\ln{(x+4)}=\ln{(2x+3)} |