Solution 3.4:3c

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Current revision (14:34, 2 October 2008) (edit) (undo)
m
 
Line 1: Line 1:
With the log laws, we can write the left-hand side as one logarithmic expression,
With the log laws, we can write the left-hand side as one logarithmic expression,
 +
{{Displayed math||<math>\ln x+\ln (x+4) = \ln (x(x+4))\,,</math>}}
-
<math>\ln x+\ln \left( x+4 \right)=\ln \left( x\left( x+4 \right) \right)</math>
+
but this rewriting presupposes that the expressions <math>\ln x</math> and <math>\ln (x+4)</math> are defined, i.e. <math>x > 0</math> and <math>x+4 > 0\,</math>. Therefore, if we choose to continue with the equation
 +
{{Displayed math||<math>\ln (x(x+4)) = \ln (2x+3)</math>}}
-
but this rewriting presupposes that the expressions
+
we must remember to permit only solutions that satisfy <math>x > 0</math> (the condition <math>x+\text{4}>0</math> is then automatically satisfied).
-
<math>\text{ln }x\text{ }</math>
+
-
and
+
-
<math>\text{ln}\left( x+\text{4} \right)</math>
+
-
are defined, i.e.
+
-
<math>x>0</math>
+
-
and
+
-
<math>x+\text{4}>0</math>. Therefore, if we choose to continue with the equation
+
-
 
+
-
 
+
-
<math>\ln \left( x\left( x+4 \right) \right)=\ln \left( 2x+3 \right)</math>
+
-
 
+
-
 
+
-
we must remember to permit only solutions that satisfy
+
-
<math>x>0</math>
+
-
(the condition
+
-
<math>x+\text{4}>0</math>
+
-
is then automatically satisfied).
+
The equation rewritten in this way is, in turn, only satisfied if the arguments
The equation rewritten in this way is, in turn, only satisfied if the arguments
-
<math>x\left( x+\text{4} \right)\text{ }</math>
+
<math>x(x+4)</math> and <math>2x+3</math> are equal to each other and positive, i.e.
-
and
+
-
<math>\text{2}x+\text{3}</math>
+
-
are equal to each other and positive, i.e.
+
-
 
+
-
 
+
-
<math>x\left( x+\text{4} \right)=\text{2}x+\text{3}</math>
+
-
 
+
-
 
+
-
We rewrite this equation as
+
-
<math>x^{\text{2}}-\text{2}x-\text{3}=0</math>
+
-
and completing the square gives
+
 +
{{Displayed math||<math>x(x+4) = 2x+3\,\textrm{.}</math>}}
-
<math>\begin{align}
+
We rewrite this equation as <math>x^2+2x-3=0</math> and completing the square gives
-
& \left( x+1 \right)^{2}-1^{2}-3=0 \\
+
-
& \left( x+1 \right)^{2}=4 \\
+
-
\end{align}</math>
+
 +
{{Displayed math||<math>\begin{align}
 +
(x+1)^2-1^2-3 &= 0\,,\\
 +
(x+1)^2=4\,,
 +
\end{align}</math>}}
-
which means that
+
which means that <math>x=-1\pm 2</math>, i.e. <math>x=-3</math> and <math>x=1\,</math>.
-
<math>x=-\text{1}\pm \text{2}</math>, i.e.
+
-
<math>x=-\text{3}</math>
+
-
and
+
-
<math>x=\text{1}</math>.
+
-
Because
+
Because <math>x=-3</math> is negative, we neglect it, whilst for <math>x=1</math> we have both that <math>x > 0</math> and <math>x(x+4) = 2x+3 > 0\,</math>. Therefore, the answer is <math>x=1\,</math>.
-
<math>x=-\text{3}</math>
+
-
is negative, we neglect it, whilst for
+
-
<math>x=\text{1}</math>
+
-
we have both that
+
-
<math>x>0\text{ }</math>
+
-
and
+
-
<math>x\left( x+\text{4} \right)=\text{2}x+\text{3}>0</math>. Therefore, the answer is
+
-
<math>x=\text{1}</math>.
+

Current revision

With the log laws, we can write the left-hand side as one logarithmic expression,

\displaystyle \ln x+\ln (x+4) = \ln (x(x+4))\,,

but this rewriting presupposes that the expressions \displaystyle \ln x and \displaystyle \ln (x+4) are defined, i.e. \displaystyle x > 0 and \displaystyle x+4 > 0\,. Therefore, if we choose to continue with the equation

\displaystyle \ln (x(x+4)) = \ln (2x+3)

we must remember to permit only solutions that satisfy \displaystyle x > 0 (the condition \displaystyle x+\text{4}>0 is then automatically satisfied).

The equation rewritten in this way is, in turn, only satisfied if the arguments \displaystyle x(x+4) and \displaystyle 2x+3 are equal to each other and positive, i.e.

\displaystyle x(x+4) = 2x+3\,\textrm{.}

We rewrite this equation as \displaystyle x^2+2x-3=0 and completing the square gives

\displaystyle \begin{align}

(x+1)^2-1^2-3 &= 0\,,\\ (x+1)^2=4\,, \end{align}

which means that \displaystyle x=-1\pm 2, i.e. \displaystyle x=-3 and \displaystyle x=1\,.

Because \displaystyle x=-3 is negative, we neglect it, whilst for \displaystyle x=1 we have both that \displaystyle x > 0 and \displaystyle x(x+4) = 2x+3 > 0\,. Therefore, the answer is \displaystyle x=1\,.