Solution 3.3:5b
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			| m  | |||
| Line 1: | Line 1: | ||
| By using the logarithm laws,  | By using the logarithm laws,  | ||
| - | + | {{Displayed math||<math>\begin{align} | |
| - | <math>\ | + | \ln a + \ln b &= \ln (a\cdot b)\,,\\[5pt] | 
| - | + | \ln a - \ln b &= \ln\frac{a}{b}\,, | |
| - | + | \end{align}</math>}} | |
| - | + | ||
| we can collect together the terms into one logarithmic expression | we can collect together the terms into one logarithmic expression | ||
| + | {{Displayed math||<math>\begin{align} | ||
| + | \ln 8 - \ln 4 - \ln 2 &= \ln 8 - (\ln 4 + \ln 2)\\[5pt] | ||
| + | &= \ln 8 - \ln(4\cdot 2)\\[5pt]  | ||
| + | &= \ln\frac{8}{4\cdot 2}\\[5pt] | ||
| + | &= \ln 1\\[5pt] | ||
| + | &= 0\,,  | ||
| + | \end{align}</math>}} | ||
| - | <math> | + | where <math>\ln 1 = 0</math>, since <math>e^{0}=1</math> (the equality <math>a^{0}=1</math> holds for all <math>a\ne 0</math>). | 
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | <math>e^{0}=1</math> | + | |
| - | (the equality  | + | |
| - | <math>a^{0}=1</math> | + | |
| - | holds for all  | + | |
| - | <math>a\ne 0</math> | + | |
| - | ). | + | |
Current revision
By using the logarithm laws,
| \displaystyle \begin{align} \ln a + \ln b &= \ln (a\cdot b)\,,\\[5pt] \ln a - \ln b &= \ln\frac{a}{b}\,, \end{align} | 
we can collect together the terms into one logarithmic expression
| \displaystyle \begin{align} \ln 8 - \ln 4 - \ln 2 &= \ln 8 - (\ln 4 + \ln 2)\\[5pt] &= \ln 8 - \ln(4\cdot 2)\\[5pt] &= \ln\frac{8}{4\cdot 2}\\[5pt] &= \ln 1\\[5pt] &= 0\,, \end{align} | 
where \displaystyle \ln 1 = 0, since \displaystyle e^{0}=1 (the equality \displaystyle a^{0}=1 holds for all \displaystyle a\ne 0).
 
		  