Solution 4.4:7b

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Lösning 4.4:7b moved to Solution 4.4:7b: Robot: moved page)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
If we use the Pythagorean identity and write
-
<center> [[Image:4_4_7b-1(2).gif]] </center>
+
<math>\sin ^{2}x</math>
-
{{NAVCONTENT_STOP}}
+
as
-
{{NAVCONTENT_START}}
+
<math>1-\cos ^{2}x</math>, the whole equation written in terms of
-
<center> [[Image:4_4_7b-2(2).gif]] </center>
+
<math>\cos x</math>
-
{{NAVCONTENT_STOP}}
+
becomes
 +
 
 +
 
 +
<math>2\left( 1-\cos ^{2}x \right)-3\cos x=0</math>
 +
 
 +
 
 +
<math></math>
 +
 
 +
or, in rearranged form,
 +
 
 +
 
 +
<math>2\cos ^{2}x+3\cos x-2=0</math>
 +
 
 +
 
 +
With the equation expressed entirely in terms of
 +
<math>\cos x</math>, we can introduce a new unknown variable
 +
<math>t=\cos x</math>
 +
and solve the equation with respect to
 +
<math>t</math>. Expressed in terms of
 +
<math>t</math>, the equation is
 +
 
 +
 
 +
<math>2t^{2}+3t-2=0</math>
 +
 
 +
 
 +
and this second-degree equation has the solutions
 +
<math>t=\frac{1}{2}</math>
 +
and
 +
<math>t=-2</math>
 +
.
 +
 
 +
In terms of
 +
<math>x</math>, this means that either
 +
<math>\cos x=\frac{1}{2}</math>
 +
or
 +
<math>\text{cos }x=-\text{2}</math>. The first case occurs when
 +
 
 +
 
 +
<math>x=\pm \frac{\pi }{3}+2n\pi </math>
 +
(
 +
<math>n</math>
 +
an arbitrary integer),
 +
 
 +
whilst the equation
 +
<math>\text{cos }x=-\text{2 }</math>
 +
has no solutions at all (the values of cosine lie between
 +
<math>-\text{1 }</math>
 +
and
 +
<math>\text{1}</math>
 +
).
 +
 
 +
The answer is that the equation has the solutions
 +
 
 +
 
 +
<math>x=\pm \frac{\pi }{3}+2n\pi </math>
 +
(
 +
<math>n</math>
 +
an arbitrary integer).

Revision as of 13:01, 1 October 2008

If we use the Pythagorean identity and write \displaystyle \sin ^{2}x as \displaystyle 1-\cos ^{2}x, the whole equation written in terms of \displaystyle \cos x becomes


\displaystyle 2\left( 1-\cos ^{2}x \right)-3\cos x=0


\displaystyle

or, in rearranged form,


\displaystyle 2\cos ^{2}x+3\cos x-2=0


With the equation expressed entirely in terms of \displaystyle \cos x, we can introduce a new unknown variable \displaystyle t=\cos x and solve the equation with respect to \displaystyle t. Expressed in terms of \displaystyle t, the equation is


\displaystyle 2t^{2}+3t-2=0


and this second-degree equation has the solutions \displaystyle t=\frac{1}{2} and \displaystyle t=-2 .

In terms of \displaystyle x, this means that either \displaystyle \cos x=\frac{1}{2} or \displaystyle \text{cos }x=-\text{2}. The first case occurs when


\displaystyle x=\pm \frac{\pi }{3}+2n\pi ( \displaystyle n an arbitrary integer),

whilst the equation \displaystyle \text{cos }x=-\text{2 } has no solutions at all (the values of cosine lie between \displaystyle -\text{1 } and \displaystyle \text{1} ).

The answer is that the equation has the solutions


\displaystyle x=\pm \frac{\pi }{3}+2n\pi ( \displaystyle n an arbitrary integer).