Solution 2.1:2c
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 2.1:2c moved to Solution 2.1:2c: Robot: moved page)  | 
				m   | 
			||
| Line 1: | Line 1: | ||
| - | + | We obtain the answer by using the squaring rule, <math>(a+b)^2=a^2+2ab+b^2,</math> on the quadratic term and expanding the other bracketed terms  | |
| - | + | ||
| - | We obtain the answer by using the squaring rule, <math>(a+b)^2=a^2+2ab+b^2,</math> on the quadratic term and expanding the other bracketed terms  | + | |
| - | <math>  | + | {{Displayed math||<math>\begin{align}  | 
| - | \  | + | (3x+4)^2&-(3x-2)(3x-8)\\  | 
| - | (3x+4)^2-(3x-2)(3x-8)  | + | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | \  | + | |
| - | + | ||
&=\big( (3x)^2+2\cdot 3x \cdot 4 +4^2 \big) - (3x\cdot 3x-3x\cdot 8 - 2\cdot 3x+ 2\cdot 8)\\  | &=\big( (3x)^2+2\cdot 3x \cdot 4 +4^2 \big) - (3x\cdot 3x-3x\cdot 8 - 2\cdot 3x+ 2\cdot 8)\\  | ||
&= (9x^2+24x+16)-(9x^2-24x-6x+16)\\  | &= (9x^2+24x+16)-(9x^2-24x-6x+16)\\  | ||
| Line 17: | Line 9: | ||
&=9x^2-9x^2+24x+30x+16-16\\  | &=9x^2-9x^2+24x+30x+16-16\\  | ||
&=0+54x+0\\  | &=0+54x+0\\  | ||
| - | &= 54x  | + | &= 54x\,\textrm{.}  | 
| - | \end{align}  | + | \end{align}</math>}}  | 
| - | </math>  | + | |
| - | + | ||
| - | + | ||
| - | + | ||
Current revision
We obtain the answer by using the squaring rule, \displaystyle (a+b)^2=a^2+2ab+b^2, on the quadratic term and expanding the other bracketed terms
| \displaystyle \begin{align}
 (3x+4)^2&-(3x-2)(3x-8)\\ &=\big( (3x)^2+2\cdot 3x \cdot 4 +4^2 \big) - (3x\cdot 3x-3x\cdot 8 - 2\cdot 3x+ 2\cdot 8)\\ &= (9x^2+24x+16)-(9x^2-24x-6x+16)\\ &=(9x^2+24x+16)-(9x^2-30x+16)\\ &=(9x^2+24x+16)-9x^2+30x-16\\ &=9x^2-9x^2+24x+30x+16-16\\ &=0+54x+0\\ &= 54x\,\textrm{.} \end{align}  | 
