Solution 3.4:1b

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Lösning 3.4:1b moved to Solution 3.4:1b: Robot: moved page)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
In the equation, both sides are positive because the factors
-
<center> [[Image:3_4_1b-1(2).gif]] </center>
+
<math>e^{x}</math>
-
{{NAVCONTENT_STOP}}
+
and
-
{{NAVCONTENT_START}}
+
<math>3^{-x}</math>
-
<center> [[Image:3_4_1b-2(2).gif]] </center>
+
are positive regardless of the value of
-
{{NAVCONTENT_STOP}}
+
<math>x</math>
 +
(a positive base raised to a number always gives a positive number). We can therefore take the natural logarithm of both numbers,
 +
 
 +
 
 +
<math>\ln \left( 13e^{x} \right)=\ln \left( 2\centerdot 3^{-x} \right)</math>
 +
 
 +
 
 +
Using the log law, we can divide up the products into several logarithmic terms,
 +
 
 +
 
 +
<math>\ln 13+\ln e^{x}=\ln 2+\ln 3^{-x}</math>
 +
 
 +
 
 +
and using the law
 +
<math>\ln a^{b}=b\centerdot \ln a</math>, we can get rid of
 +
<math>x</math>
 +
from the exponents:
 +
 
 +
 
 +
<math>\ln 13+x\ln e=\ln 2+\left( -x \right)\ln 3</math>
 +
 
 +
 
 +
Collecting together
 +
<math>x</math>
 +
on one side and the other terms on the other,
 +
 
 +
 
 +
<math>x\ln e+x\ln 3=\ln 2-\ln 13</math>
 +
 
 +
 
 +
Take out
 +
<math>x</math>
 +
on the left-hand side and use
 +
<math>\ln e=1</math>
 +
:
 +
 
 +
 
 +
<math>x\left( 1+\ln 3 \right)=\ln 2-\ln 13</math>
 +
 
 +
 
 +
Then, solve for
 +
<math>x</math>
 +
:
 +
 
 +
 
 +
<math>x=\frac{\ln 2-\ln 13}{1+\ln 3}</math>
 +
 
 +
 
 +
NOTE: Because
 +
<math>\ln 2<\ln 13</math>, we can write the answer as
 +
 
 +
 
 +
<math>x=-\frac{\ln 13-\ln 2}{1+\ln 3}</math>
 +
 
 +
 
 +
in order to indicate that
 +
<math>x</math>
 +
is negative.

Revision as of 12:55, 12 September 2008

In the equation, both sides are positive because the factors \displaystyle e^{x} and \displaystyle 3^{-x} are positive regardless of the value of \displaystyle x (a positive base raised to a number always gives a positive number). We can therefore take the natural logarithm of both numbers,


\displaystyle \ln \left( 13e^{x} \right)=\ln \left( 2\centerdot 3^{-x} \right)


Using the log law, we can divide up the products into several logarithmic terms,


\displaystyle \ln 13+\ln e^{x}=\ln 2+\ln 3^{-x}


and using the law \displaystyle \ln a^{b}=b\centerdot \ln a, we can get rid of \displaystyle x from the exponents:


\displaystyle \ln 13+x\ln e=\ln 2+\left( -x \right)\ln 3


Collecting together \displaystyle x on one side and the other terms on the other,


\displaystyle x\ln e+x\ln 3=\ln 2-\ln 13


Take out \displaystyle x on the left-hand side and use \displaystyle \ln e=1


\displaystyle x\left( 1+\ln 3 \right)=\ln 2-\ln 13


Then, solve for \displaystyle x


\displaystyle x=\frac{\ln 2-\ln 13}{1+\ln 3}


NOTE: Because \displaystyle \ln 2<\ln 13, we can write the answer as


\displaystyle x=-\frac{\ln 13-\ln 2}{1+\ln 3}


in order to indicate that \displaystyle x is negative.