Solution 4.4:2f

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Lösning 4.4:2f moved to Solution 4.4:2f: Robot: moved page)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
Using the unit circle shows that the equation
-
<center> [[Image:4_4_2f.gif]] </center>
+
<math>\text{cos 3}x=-\frac{1}{\sqrt{2}}</math>
-
{{NAVCONTENT_STOP}}
+
has two solutions for
 +
<math>0\le \text{3}x\le \text{2}\pi </math>,
 +
 
 +
 
 +
<math>3x=\frac{\pi }{2}+\frac{\pi }{4}=\frac{3\pi }{4}</math>
 +
and
 +
<math>3x=\pi +\frac{\pi }{4}=\frac{5\pi }{4}</math>
[[Image:4_4_2_f.gif|center]]
[[Image:4_4_2_f.gif|center]]
 +
 +
We obtain the other solutions by adding multiples of
 +
<math>2\pi </math>,
 +
 +
 +
<math>3x=\frac{3\pi }{4}+2n\pi </math>
 +
and
 +
<math>3x=\frac{5\pi }{4}+2n\pi </math>
 +
 +
 +
i.e.
 +
 +
 +
<math>x=\frac{\pi }{4}+\frac{2}{3}n\pi </math>
 +
and
 +
<math>x=\frac{5\pi }{12}+\frac{2}{3}n\pi </math>
 +
 +
 +
where
 +
<math>n</math>
 +
is an arbitrary integer.

Revision as of 08:57, 1 October 2008

Using the unit circle shows that the equation \displaystyle \text{cos 3}x=-\frac{1}{\sqrt{2}} has two solutions for \displaystyle 0\le \text{3}x\le \text{2}\pi ,


\displaystyle 3x=\frac{\pi }{2}+\frac{\pi }{4}=\frac{3\pi }{4} and \displaystyle 3x=\pi +\frac{\pi }{4}=\frac{5\pi }{4}

We obtain the other solutions by adding multiples of \displaystyle 2\pi ,


\displaystyle 3x=\frac{3\pi }{4}+2n\pi and \displaystyle 3x=\frac{5\pi }{4}+2n\pi


i.e.


\displaystyle x=\frac{\pi }{4}+\frac{2}{3}n\pi and \displaystyle x=\frac{5\pi }{12}+\frac{2}{3}n\pi


where \displaystyle n is an arbitrary integer.