Solution 2.2:3c

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Lösning 2.2:3c moved to Solution 2.2:3c: Robot: moved page)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
(The exercise is taken from an actual exam from Spring Term 1944!)
-
<center> [[Image:2_2_3c-1(3).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
Start by rewriting the terms on the left-hand side as one term having a common denominator:
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Image:2_2_3c-2(3).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
<math>\begin{align}
-
{{NAVCONTENT_START}}
+
& \frac{1}{x-1}-\frac{1}{x+1}=\frac{1}{x-1}\centerdot \frac{x+1}{x+1}-\frac{1}{x+1}\centerdot \frac{x-1}{x-1} \\
-
<center> [[Image:2_2_3c-3(3).gif]] </center>
+
& =\frac{x+1}{\left( x-1 \right)\left( x+1 \right)}-\frac{x-1}{\left( x-1 \right)\left( x+1 \right)}=\frac{\left( x+1 \right)-\left( x-1 \right)}{\left( x-1 \right)\left( x+1 \right)}=\frac{2}{\left( x-1 \right)\left( x+1 \right)} \\
-
{{NAVCONTENT_STOP}}
+
\end{align}</math>
 +
 
 +
 
 +
If we also write
 +
<math>3x-3=3\left( x-1 \right)</math>, the equation can be rewritten as
 +
 
 +
 
 +
<math>\frac{2}{\left( x-1 \right)\left( x+1 \right)}\left( x^{2}+\frac{1}{2} \right)=\frac{6x-1}{3\left( x-1 \right)}</math>
 +
 
 +
 
 +
Because
 +
<math>x=1</math>
 +
cannot be a solution to the equation, the factor
 +
<math>x-1</math>
 +
can be removed from the denominator of both sides (i.e. actually, we multiply both sides by
 +
<math>x-1</math>
 +
and then eliminate it).
 +
 
 +
 
 +
<math>\frac{2}{x+1}\left( x^{2}+\frac{1}{2} \right)=\frac{6x-1}{3}</math>
 +
 
 +
 
 +
Then, both sides are multiplied by
 +
<math>3</math>
 +
and
 +
<math>x+1</math>, so that we get an equation without any denominators.
 +
 
 +
 
 +
<math>6\left( x^{2}+\frac{1}{2} \right)=\left( 6x-1 \right)\left( x+1 \right)</math>
 +
 
 +
 
 +
Expanding both sides
 +
 
 +
 
 +
<math>6x^{2}+3=6x^{2}+5x-1</math>
 +
 
 +
 
 +
the x2 terms cancel each other out and we obtain a first-order equation,
 +
 
 +
 
 +
<math>3=5x-1</math>
 +
 
 +
 
 +
which has the solution
 +
 
 +
 
 +
<math>x=\frac{4}{5}</math>
 +
 
 +
 
 +
We check whether we have calculated correctly by substituting x=4/5 into the original equation:
 +
 
 +
 
 +
<math>\begin{align}
 +
& \text{LHS}=\left( \frac{1}{\frac{4}{5}-1}-\frac{1}{\frac{4}{5}+1} \right)\left( \left( \frac{4}{5} \right)^{2}+\frac{1}{2} \right)=\left( \frac{1}{-\frac{1}{5}}-\frac{1}{\frac{9}{5}} \right)\left( \frac{16}{25}+\frac{1}{2} \right) \\
 +
& \\
 +
& =\left( -5-\frac{5}{9} \right)\frac{16\centerdot 2+25}{2\centerdot 25}=-\frac{50}{9}\centerdot \frac{57}{50}=-\frac{57}{9}=-\frac{19}{3}, \\
 +
\end{align}</math>
 +
 
 +
 
 +
 
 +
<math>\text{RHS}=\frac{6\centerdot \frac{4}{5}-1}{3\centerdot \frac{4}{5}-3}=\frac{\frac{24}{5}-\frac{5}{5}}{\frac{12}{5}-\frac{15}{5}}=\frac{\frac{1}{5}\centerdot \left( 24-5 \right)}{\frac{1}{5}\centerdot \left( 12-15 \right)}=\frac{19}{-3}=-\frac{19}{3}</math>

Revision as of 15:12, 17 September 2008

(The exercise is taken from an actual exam from Spring Term 1944!)

Start by rewriting the terms on the left-hand side as one term having a common denominator:


\displaystyle \begin{align} & \frac{1}{x-1}-\frac{1}{x+1}=\frac{1}{x-1}\centerdot \frac{x+1}{x+1}-\frac{1}{x+1}\centerdot \frac{x-1}{x-1} \\ & =\frac{x+1}{\left( x-1 \right)\left( x+1 \right)}-\frac{x-1}{\left( x-1 \right)\left( x+1 \right)}=\frac{\left( x+1 \right)-\left( x-1 \right)}{\left( x-1 \right)\left( x+1 \right)}=\frac{2}{\left( x-1 \right)\left( x+1 \right)} \\ \end{align}


If we also write \displaystyle 3x-3=3\left( x-1 \right), the equation can be rewritten as


\displaystyle \frac{2}{\left( x-1 \right)\left( x+1 \right)}\left( x^{2}+\frac{1}{2} \right)=\frac{6x-1}{3\left( x-1 \right)}


Because \displaystyle x=1 cannot be a solution to the equation, the factor \displaystyle x-1 can be removed from the denominator of both sides (i.e. actually, we multiply both sides by \displaystyle x-1 and then eliminate it).


\displaystyle \frac{2}{x+1}\left( x^{2}+\frac{1}{2} \right)=\frac{6x-1}{3}


Then, both sides are multiplied by \displaystyle 3 and \displaystyle x+1, so that we get an equation without any denominators.


\displaystyle 6\left( x^{2}+\frac{1}{2} \right)=\left( 6x-1 \right)\left( x+1 \right)


Expanding both sides


\displaystyle 6x^{2}+3=6x^{2}+5x-1


the x2 terms cancel each other out and we obtain a first-order equation,


\displaystyle 3=5x-1


which has the solution


\displaystyle x=\frac{4}{5}


We check whether we have calculated correctly by substituting x=4/5 into the original equation:


\displaystyle \begin{align} & \text{LHS}=\left( \frac{1}{\frac{4}{5}-1}-\frac{1}{\frac{4}{5}+1} \right)\left( \left( \frac{4}{5} \right)^{2}+\frac{1}{2} \right)=\left( \frac{1}{-\frac{1}{5}}-\frac{1}{\frac{9}{5}} \right)\left( \frac{16}{25}+\frac{1}{2} \right) \\ & \\ & =\left( -5-\frac{5}{9} \right)\frac{16\centerdot 2+25}{2\centerdot 25}=-\frac{50}{9}\centerdot \frac{57}{50}=-\frac{57}{9}=-\frac{19}{3}, \\ \end{align}


\displaystyle \text{RHS}=\frac{6\centerdot \frac{4}{5}-1}{3\centerdot \frac{4}{5}-3}=\frac{\frac{24}{5}-\frac{5}{5}}{\frac{12}{5}-\frac{15}{5}}=\frac{\frac{1}{5}\centerdot \left( 24-5 \right)}{\frac{1}{5}\centerdot \left( 12-15 \right)}=\frac{19}{-3}=-\frac{19}{3}