Solution 2.1:6d

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Lösning 2.1:6d moved to Solution 2.1:6d: Robot: moved page)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
First, we simplify the numerator and denominator for the whole fraction by rewriting as
-
<center> [[Image:2_1_6d.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\begin{align}
 +
& a-b+\frac{b^{2}}{a+b}=\left( a-b \right)\centerdot \frac{a+b}{a+b}+\frac{b^{2}}{a+b}=\frac{\left( a-b \right)\centerdot \left( a+b \right)+b^{2}}{a+b} \\
 +
& \frac{a^{2}-b^{2}+b^{2}}{a+b}=\frac{a^{2}}{a+b} \\
 +
\end{align}</math>
 +
 
 +
 
 +
 
 +
<math>\begin{align}
 +
& 1-\left( \frac{a-b}{a+b} \right)^{2}=1-\frac{\left( a-b \right)^{2}}{\left( a+b \right)^{2}}=\frac{\left( a+b \right)^{2}}{\left( a+b \right)^{2}}-\frac{\left( a-b \right)^{2}}{\left( a+b \right)^{2}} \\
 +
& =\frac{\left( a+b \right)^{2}-\left( a-b \right)^{2}}{\left( a+b \right)^{2}} \\
 +
& =\frac{\left( a^{2}+2ab+b^{2} \right)-\left( a^{2}-2ab+b^{2} \right)}{\left( a+b \right)^{2}}=\frac{4ab}{\left( a+b \right)^{2}} \\
 +
\end{align}</math>
 +
 
 +
 
 +
The whole fraction is therefore
 +
 
 +
 
 +
<math>\frac{a-b+\frac{b^{2}}{a+b}}{1-\left( \frac{a-b}{a+b} \right)^{2}}=\frac{\frac{a^{2}}{a+b}}{\frac{4ab}{\left( a+b \right)^{2}}}=\frac{a^{2}}{a+b}\centerdot \frac{\left( a+b \right)^{2}}{4ab}=\frac{a\left( a+b \right)}{4b}</math>

Revision as of 11:23, 16 September 2008

First, we simplify the numerator and denominator for the whole fraction by rewriting as


\displaystyle \begin{align} & a-b+\frac{b^{2}}{a+b}=\left( a-b \right)\centerdot \frac{a+b}{a+b}+\frac{b^{2}}{a+b}=\frac{\left( a-b \right)\centerdot \left( a+b \right)+b^{2}}{a+b} \\ & \frac{a^{2}-b^{2}+b^{2}}{a+b}=\frac{a^{2}}{a+b} \\ \end{align}


\displaystyle \begin{align} & 1-\left( \frac{a-b}{a+b} \right)^{2}=1-\frac{\left( a-b \right)^{2}}{\left( a+b \right)^{2}}=\frac{\left( a+b \right)^{2}}{\left( a+b \right)^{2}}-\frac{\left( a-b \right)^{2}}{\left( a+b \right)^{2}} \\ & =\frac{\left( a+b \right)^{2}-\left( a-b \right)^{2}}{\left( a+b \right)^{2}} \\ & =\frac{\left( a^{2}+2ab+b^{2} \right)-\left( a^{2}-2ab+b^{2} \right)}{\left( a+b \right)^{2}}=\frac{4ab}{\left( a+b \right)^{2}} \\ \end{align}


The whole fraction is therefore


\displaystyle \frac{a-b+\frac{b^{2}}{a+b}}{1-\left( \frac{a-b}{a+b} \right)^{2}}=\frac{\frac{a^{2}}{a+b}}{\frac{4ab}{\left( a+b \right)^{2}}}=\frac{a^{2}}{a+b}\centerdot \frac{\left( a+b \right)^{2}}{4ab}=\frac{a\left( a+b \right)}{4b}