Solution 2.1:3f
From Förberedande kurs i matematik 1
(Difference between revisions)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_1_3f.gif </center> {{NAVCONTENT_STOP}}) |
m |
||
| (4 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{ | + | Treating <math>4x</math> as one term, we can write |
| - | < | + | |
| - | {{ | + | {{Displayed math||<math> \qquad 16x^2+8x+1=(4x)^2 +2\cdot 4x +1 </math>}} |
| + | |||
| + | and since <math> y^2 +2y+1=(y+1)^2 </math> we obtain | ||
| + | |||
| + | {{Displayed math||<math> \qquad (4x)^2 +2\cdot 4x +1= (4x+1)^2 </math>.}} | ||
Current revision
Treating \displaystyle 4x as one term, we can write
| \displaystyle \qquad 16x^2+8x+1=(4x)^2 +2\cdot 4x +1 |
and since \displaystyle y^2 +2y+1=(y+1)^2 we obtain
| \displaystyle \qquad (4x)^2 +2\cdot 4x +1= (4x+1)^2 . |
