Solution 2.1:3a
From Förberedande kurs i matematik 1
(Difference between revisions)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_1_3a.gif </center> {{NAVCONTENT_STOP}}) |
m |
||
| (3 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | + | If we look at the expression, we see that it can be written as <math>x^2-6^2</math> and can therefore be factorized using the conjugate rule | |
| - | < | + | |
| - | {{ | + | {{Displayed math||<math> x^2-36=x^2-6^2=(x+6)(x-6)\,\textrm{.}</math>}} |
| + | |||
| + | Because the factors <math> x+6 </math> and <math> x-6 </math> are linear expressions, they cannot be factorized any further (as polynomial factors). | ||
Current revision
If we look at the expression, we see that it can be written as \displaystyle x^2-6^2 and can therefore be factorized using the conjugate rule
| \displaystyle x^2-36=x^2-6^2=(x+6)(x-6)\,\textrm{.} |
Because the factors \displaystyle x+6 and \displaystyle x-6 are linear expressions, they cannot be factorized any further (as polynomial factors).
