Solution 2.3:7c
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Lösning 2.3:7c moved to Solution 2.3:7c: Robot: moved page) |
m |
||
| (One intermediate revision not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{ | + | If we complete the square, |
| - | + | ||
| - | {{ | + | {{Displayed math||<math>x^{2}+x+1=\Bigl(x+\frac{1}{2}\Bigr)^{2}-\Bigl(\frac{1}{2} \Bigr)^{2}+1 = \Bigl(x+\frac{1}{2}\Bigr)^{2} + \frac{3}{4}\,,</math>}} |
| + | |||
| + | we see on the right-hand side that we can make the expression arbitrarily large simply by choosing <math>x+\tfrac{1}{2}</math> sufficiently large. Hence, there is no maximum value. | ||
Current revision
If we complete the square,
| \displaystyle x^{2}+x+1=\Bigl(x+\frac{1}{2}\Bigr)^{2}-\Bigl(\frac{1}{2} \Bigr)^{2}+1 = \Bigl(x+\frac{1}{2}\Bigr)^{2} + \frac{3}{4}\,, |
we see on the right-hand side that we can make the expression arbitrarily large simply by choosing \displaystyle x+\tfrac{1}{2} sufficiently large. Hence, there is no maximum value.
