Solution 1.2:3a
From Förberedande kurs i matematik 1
(Difference between revisions)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:1_2_3a.gif </center> {{NAVCONTENT_STOP}}) |
m |
||
| (3 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{ | + | The denominator in the expression has 10 as a common factor, |
| - | < | + | |
| - | {{ | + | {{Displayed math||<math>\frac{3}{2\cdot 10}+\frac{7}{5\cdot 10}-\frac{1}{10}\,</math>,}} |
| + | |||
| + | and it is therefore sufficient to multiply the top and bottom of each fraction by the other factors in the denominators in order to obtain a common denominator, | ||
| + | |||
| + | {{Displayed math||<math>\frac{3\cdot 5}{20\cdot 5}+\frac{7\cdot 2}{50\cdot 2}-\frac{1\cdot 5\cdot 2}{10\cdot 5\cdot 2}=\frac{15}{100}+\frac{14}{100}-\frac{10}{100}\,</math>.}} | ||
| + | |||
| + | The lowest common denominator (LCD) is therefore 100, and the expression is equal to | ||
| + | |||
| + | {{Displayed math||<math>\frac{15}{100}+\frac{14}{100}-\frac{10}{100}=\frac{15+14-10}{100}=\frac{19}{100}\,</math>.}} | ||
Current revision
The denominator in the expression has 10 as a common factor,
| \displaystyle \frac{3}{2\cdot 10}+\frac{7}{5\cdot 10}-\frac{1}{10}\,, |
and it is therefore sufficient to multiply the top and bottom of each fraction by the other factors in the denominators in order to obtain a common denominator,
| \displaystyle \frac{3\cdot 5}{20\cdot 5}+\frac{7\cdot 2}{50\cdot 2}-\frac{1\cdot 5\cdot 2}{10\cdot 5\cdot 2}=\frac{15}{100}+\frac{14}{100}-\frac{10}{100}\,. |
The lowest common denominator (LCD) is therefore 100, and the expression is equal to
| \displaystyle \frac{15}{100}+\frac{14}{100}-\frac{10}{100}=\frac{15+14-10}{100}=\frac{19}{100}\,. |
