Solution 2.1:1c
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Lösning 2.1:1c moved to Solution 2.1:1c: Robot: moved page) |
m |
||
| Line 1: | Line 1: | ||
| - | + | The factor <math> -x^2 </math> can be written as <math>(-1)x^2</math> and both factors can be multiplied into the bracket | |
| - | + | ||
| - | The factor <math> -x^2 </math> can be written as <math>(-1)x^2 </math> and both factors can be multiplied into the bracket | + | |
| - | <math> | + | {{Displayed math||<math>\begin{align} |
| - | + | -x^2 (4-y^2) &= (-1)x^2(4-y^2)\\[3pt] | |
| - | \begin{align} | + | &= (-1)x^2 \cdot 4 - (-1)x^2 \cdot y^2\\[3pt] |
| - | -x^2 (4-y^2) &= (-1)x^2(4-y^2) \\ | + | &= -4x^2 +x^2 y^2\,\textrm{.} |
| - | &= (-1)x^2 \cdot 4 - (-1)x^2 \cdot y^2 \\ | + | \end{align}</math>}} |
| - | &= -4x^2 +x^2 y^2. | + | |
| - | \end{align} | + | |
| - | </math> | + | |
| - | + | ||
| - | + | ||
| - | + | ||
Current revision
The factor \displaystyle -x^2 can be written as \displaystyle (-1)x^2 and both factors can be multiplied into the bracket
| \displaystyle \begin{align}
-x^2 (4-y^2) &= (-1)x^2(4-y^2)\\[3pt] &= (-1)x^2 \cdot 4 - (-1)x^2 \cdot y^2\\[3pt] &= -4x^2 +x^2 y^2\,\textrm{.} \end{align} |
