Solution 3.3:4b
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Robot: Automated text replacement (-[[Bild: +[[Image:)) |
m |
||
| (2 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | + | The two terms can be combined into one logarithmic expression using the log law | |
| - | < | + | <math>\lg a + \lg b = \lg (ab)</math>, |
| - | {{ | + | |
| + | {{Displayed math||<math>\lg 23 + \lg\frac{1}{23} = \lg \Bigl(23\cdot\frac{1}{23}\Bigr) = \lg 1 = 0\,\textrm{.}</math>}} | ||
Current revision
The two terms can be combined into one logarithmic expression using the log law \displaystyle \lg a + \lg b = \lg (ab),
| \displaystyle \lg 23 + \lg\frac{1}{23} = \lg \Bigl(23\cdot\frac{1}{23}\Bigr) = \lg 1 = 0\,\textrm{.} |
