Solution 2.3:10a
From Förberedande kurs i matematik 1
(Difference between revisions)
m |
|||
| (3 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{ | + | Individually, the inequalities <math>y\ge x^{2}</math> and <math>y\le 1</math> define the region above the parabola <math>y=x^{2}</math> and under the line <math>y=1</math>, respectively. |
| - | < | + | |
| - | + | {| align="center" | |
| - | [[ | + | |align="center"|[[Image:2_3_10_a-1.gif|center]] |
| - | [[ | + | |width="10px"| |
| + | |align="center"|[[Image:2_3_10_a-2.gif|center]] | ||
| + | |- | ||
| + | |align="center"|<small>The region ''y'' ≥ ''x''²</small> | ||
| + | || | ||
| + | |align="center"|<small>The region ''y'' ≤ 1</small> | ||
| + | |} | ||
| + | |||
| + | Those points which satisfy both inequalities lie in the region above the parabola, but below the line <math>y=1\,</math>. | ||
| + | |||
| + | |||
| + | [[Image:2_3_10_a2.gif|center]] | ||
Current revision
Individually, the inequalities \displaystyle y\ge x^{2} and \displaystyle y\le 1 define the region above the parabola \displaystyle y=x^{2} and under the line \displaystyle y=1, respectively.
| The region y ≥ x² | The region y ≤ 1 |
Those points which satisfy both inequalities lie in the region above the parabola, but below the line \displaystyle y=1\,.



