Solution 4.4:2f

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:4_4_2f.gif </center> {{NAVCONTENT_STOP}})
Current revision (12:44, 13 October 2008) (edit) (undo)
m
 
(4 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
Using the unit circle shows that the equation <math>\cos 3x = -1/\!\sqrt{2}</math>
-
<center> [[Bild:4_4_2f.gif]] </center>
+
has two solutions for <math>0\le 3x\le 2\pi\,</math>,
-
{{NAVCONTENT_STOP}}
+
 
 +
{{Displayed math||<math>3x = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}\qquad\text{and}\qquad 3x = \pi + \frac{\pi}{4} = \frac{5\pi}{4}\,\textrm{.}</math>}}
 +
 
 +
[[Image:4_4_2_f.gif|center]]
 +
 
 +
We obtain the other solutions by adding multiples of <math>2\pi</math>,
 +
 
 +
{{Displayed math||<math>3x = \frac{3\pi}{4} + 2n\pi\qquad\text{and}\qquad 3x = \frac{5\pi}{4} + 2n\pi\,,</math>}}
 +
 
 +
i.e.
 +
 
 +
{{Displayed math||<math>x = \frac{\pi}{4} + \frac{2}{3}n\pi\qquad\text{and}\qquad x = \frac{5\pi}{12} + \frac{2}{3}n\pi\,,</math>}}
 +
 
 +
where ''n'' is an arbitrary integer.

Current revision

Using the unit circle shows that the equation \displaystyle \cos 3x = -1/\!\sqrt{2} has two solutions for \displaystyle 0\le 3x\le 2\pi\,,

\displaystyle 3x = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}\qquad\text{and}\qquad 3x = \pi + \frac{\pi}{4} = \frac{5\pi}{4}\,\textrm{.}

We obtain the other solutions by adding multiples of \displaystyle 2\pi,

\displaystyle 3x = \frac{3\pi}{4} + 2n\pi\qquad\text{and}\qquad 3x = \frac{5\pi}{4} + 2n\pi\,,

i.e.

\displaystyle x = \frac{\pi}{4} + \frac{2}{3}n\pi\qquad\text{and}\qquad x = \frac{5\pi}{12} + \frac{2}{3}n\pi\,,

where n is an arbitrary integer.