Solution 3.4:3a

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:3_4_3a-1(2).gif </center> {{NAVCONTENT_STOP}} {{NAVCONTENT_START}} <center> Bild:3_4_3a-2(2).gif </center> {{NAVCONTENT_STOP}})
Current revision (14:15, 2 October 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
Both left- and right-hand sides are positive for all values of ''x'' and this means that we can take the logarithm of both sides and get a more manageable equation,
-
<center> [[Bild:3_4_3a-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\begin{align}
-
{{NAVCONTENT_START}}
+
\text{LHS} &= \ln 2^{-x^{2}} = -x^{2}\cdot \ln 2\,,\\[5pt]
-
<center> [[Bild:3_4_3a-2(2).gif]] </center>
+
\text{RHS} &= \ln \bigl(2e^{2x}\bigr) = \ln 2 + \ln e^{2x} = \ln 2 + 2x\cdot \ln e = \ln 2 + 2x\cdot 1\,\textrm{.}
-
{{NAVCONTENT_STOP}}
+
\end{align}</math>}}
 +
 
 +
After a little rearranging, the equation becomes
 +
 
 +
{{Displayed math||<math>x^{2}+\frac{2}{\ln 2}x+1=0\,\textrm{.}</math>}}
 +
 
 +
We complete the square of the left-hand side,
 +
 
 +
{{Displayed math||<math>\Bigl(x+\frac{1}{\ln 2}\Bigr)^{2} - \Bigl(\frac{1}{\ln 2} \Bigr)^{2} + 1 = 0\,,</math>}}
 +
 
 +
and move the constant terms over to the right-hand side,
 +
 
 +
{{Displayed math||<math>\Bigl(x+\frac{1}{\ln 2}\Bigr)^{2} = \Bigl(\frac{1}{\ln 2} \Bigr)^{2} - 1\,\textrm{.}</math>}}
 +
 
 +
It can be difficult to see whether the right-hand side is positive or not, but if we remember that <math>e > 2</math> and that thus <math>\ln 2 < \ln e = 1\,</math>, we must have that <math>(1/\ln 2)^{2} > 1\,</math>, i.e. the right-hand side is positive.
 +
 
 +
The equation therefore has the solutions
 +
 
 +
{{Displayed math||<math>x=-\frac{1}{\ln 2}\pm \sqrt{\Bigl(\frac{1}{\ln 2} \Bigr)^{2}-1}\,,</math>}}
 +
 
 +
which can also be written as
 +
 
 +
{{Displayed math||<math>x=\frac{-1\pm \sqrt{1-(\ln 2)^{2}}}{\ln 2}\,\textrm{.}</math>}}

Current revision

Both left- and right-hand sides are positive for all values of x and this means that we can take the logarithm of both sides and get a more manageable equation,

\displaystyle \begin{align}

\text{LHS} &= \ln 2^{-x^{2}} = -x^{2}\cdot \ln 2\,,\\[5pt] \text{RHS} &= \ln \bigl(2e^{2x}\bigr) = \ln 2 + \ln e^{2x} = \ln 2 + 2x\cdot \ln e = \ln 2 + 2x\cdot 1\,\textrm{.} \end{align}

After a little rearranging, the equation becomes

\displaystyle x^{2}+\frac{2}{\ln 2}x+1=0\,\textrm{.}

We complete the square of the left-hand side,

\displaystyle \Bigl(x+\frac{1}{\ln 2}\Bigr)^{2} - \Bigl(\frac{1}{\ln 2} \Bigr)^{2} + 1 = 0\,,

and move the constant terms over to the right-hand side,

\displaystyle \Bigl(x+\frac{1}{\ln 2}\Bigr)^{2} = \Bigl(\frac{1}{\ln 2} \Bigr)^{2} - 1\,\textrm{.}

It can be difficult to see whether the right-hand side is positive or not, but if we remember that \displaystyle e > 2 and that thus \displaystyle \ln 2 < \ln e = 1\,, we must have that \displaystyle (1/\ln 2)^{2} > 1\,, i.e. the right-hand side is positive.

The equation therefore has the solutions

\displaystyle x=-\frac{1}{\ln 2}\pm \sqrt{\Bigl(\frac{1}{\ln 2} \Bigr)^{2}-1}\,,

which can also be written as

\displaystyle x=\frac{-1\pm \sqrt{1-(\ln 2)^{2}}}{\ln 2}\,\textrm{.}