Solution 4.4:6b

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:4_4_6b-1(2).gif </center> {{NAVCONTENT_STOP}} {{NAVCONTENT_START}} <center> Bild:4_4_6b-2(2).gif </center> {{NAVCONTENT_STOP}})
Current revision (14:38, 13 October 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
After moving the terms over to the left-hand side, so that
-
<center> [[Bild:4_4_6b-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\sqrt{2}\sin x\cos x-\cos x=0</math>}}
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Bild:4_4_6b-2(2).gif]] </center>
+
we see that we can take out a common factor <math>\cos x</math>,
-
{{NAVCONTENT_STOP}}
+
 
 +
{{Displayed math||<math>\cos x (\sqrt{2}\sin x-1) = 0</math>}}
 +
 
 +
and that the equation is only satisfied if at least one of the factors <math>\cos x</math> or <math>\sqrt{2}\sin x - 1</math> is zero. Thus, there are two cases:
 +
 
 +
 
 +
<math>\cos x=0:</math>
 +
 
 +
This basic equation has solutions <math>x=\pi/2</math> and <math>x=3\pi/2</math> in the unit circle, and from this we see that the general solution is
 +
 
 +
{{Displayed math||<math>x=\frac{\pi}{2}+2n\pi\qquad\text{and}\qquad x=\frac{3\pi }{2}+2n\pi\,,</math>}}
 +
 
 +
where ''n'' is an arbitrary integer. Because the angles <math>\pi/2</math> and
 +
<math>3\pi/2</math> differ by <math>\pi</math>, the solutions can be summarized as
 +
 
 +
{{Displayed math||<math>x=\frac{\pi}{2}+n\pi\,,</math>}}
 +
 
 +
where ''n'' is an arbitrary integer.
 +
 
 +
 
 +
<math>\sqrt{2}\sin x - 1 = 0:</math>
 +
 
 +
If we rearrange the equation, we obtain the basic equation as <math>\sin x = 1/\!\sqrt{2}</math>, which has the solutions <math>x=\pi/4</math> and <math>x=3\pi /4</math> in the unit circle and hence the general solution
 +
 
 +
{{Displayed math||<math>x=\frac{\pi}{4}+2n\pi\qquad\text{and}\qquad x=\frac{3\pi }{4}+2n\pi\,,</math>}}
 +
 
 +
where ''n'' is an arbitrary integer.
 +
 
 +
 
 +
All in all, the original equation has the solutions
 +
 
 +
{{Displayed math||<math>\left\{\begin{align}
 +
x &= \frac{\pi}{4}+2n\pi\,,\\[5pt]
 +
x &= \frac{\pi}{2}+n\pi\,,\\[5pt]
 +
x &= \frac{3\pi}{4}+2n\pi\,,
 +
\end{align}\right.</math>}}
 +
 
 +
where ''n'' is an arbitrary integer.

Current revision

After moving the terms over to the left-hand side, so that

\displaystyle \sqrt{2}\sin x\cos x-\cos x=0

we see that we can take out a common factor \displaystyle \cos x,

\displaystyle \cos x (\sqrt{2}\sin x-1) = 0

and that the equation is only satisfied if at least one of the factors \displaystyle \cos x or \displaystyle \sqrt{2}\sin x - 1 is zero. Thus, there are two cases:


\displaystyle \cos x=0:

This basic equation has solutions \displaystyle x=\pi/2 and \displaystyle x=3\pi/2 in the unit circle, and from this we see that the general solution is

\displaystyle x=\frac{\pi}{2}+2n\pi\qquad\text{and}\qquad x=\frac{3\pi }{2}+2n\pi\,,

where n is an arbitrary integer. Because the angles \displaystyle \pi/2 and \displaystyle 3\pi/2 differ by \displaystyle \pi, the solutions can be summarized as

\displaystyle x=\frac{\pi}{2}+n\pi\,,

where n is an arbitrary integer.


\displaystyle \sqrt{2}\sin x - 1 = 0:

If we rearrange the equation, we obtain the basic equation as \displaystyle \sin x = 1/\!\sqrt{2}, which has the solutions \displaystyle x=\pi/4 and \displaystyle x=3\pi /4 in the unit circle and hence the general solution

\displaystyle x=\frac{\pi}{4}+2n\pi\qquad\text{and}\qquad x=\frac{3\pi }{4}+2n\pi\,,

where n is an arbitrary integer.


All in all, the original equation has the solutions

\displaystyle \left\{\begin{align}

x &= \frac{\pi}{4}+2n\pi\,,\\[5pt] x &= \frac{\pi}{2}+n\pi\,,\\[5pt] x &= \frac{3\pi}{4}+2n\pi\,, \end{align}\right.

where n is an arbitrary integer.