Solution 4.3:8c

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Lösning 4.3:8c moved to Solution 4.3:8c: Robot: moved page)
Current revision (08:38, 10 October 2008) (edit) (undo)
m
 
(One intermediate revision not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
One could write <math>\tan\frac{u}{2}</math> as a quotient involving sine and cosine, and then continue with the formula for half-angles,
-
<center> [[Image:4_3_8c-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\tan\frac{u}{2} = \frac{\sin\dfrac{u}{2}}{\cos\dfrac{u}{2}} = \ldots</math>}}
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Image:4_3_8c-2(2).gif]] </center>
+
but because this leads to square roots and difficulties with keeping a check on the correct sign in front of the roots, it is perhaps simpler instead to go backwards and work with the right-hand side.
-
{{NAVCONTENT_STOP}}
+
 
 +
We write <math>u</math> as <math>2\cdot(u/2)</math>and use the formula for double angles (so as to end up with a right-hand side which has <math>u/2</math> as its argument),
 +
 
 +
{{Displayed math||<math>\frac{\sin u}{1+\cos u} = \frac{\sin \Bigl(2\cdot\dfrac{u}{2}\Bigr)}{1+\cos\Bigl(2\cdot\dfrac{u}{2}\Bigr)} = \frac{2\cos\dfrac{u}{2}\cdot \sin\dfrac{u}{2}}{1+\cos^2\cfrac{u}{2}-\sin^2\cfrac{u}{2}}\,\textrm{.}</math>}}
 +
 
 +
Writing the 1 in the denominator as <math>\cos^2(u/2) + \sin^2(u/2)</math> using the Pythagorean identity,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\frac{2\cos\dfrac{u}{2}\cdot\sin\dfrac{u}{2}}{1+\cos^2\dfrac{u}{2}-\sin^2\dfrac{u}{2}}
 +
&= \frac{2\cos\dfrac{u}{2}\sin\dfrac{u}{2}}{\cos^2\dfrac{u}{2} + \sin^2\dfrac{u}{2} + \cos^2\dfrac{u}{2} - \sin^2\dfrac{u}{2}}\\[8pt]
 +
&= \frac{2\cos\dfrac{u}{2}\sin\dfrac{u}{2}}{2\cos^2\dfrac{u}{2}}\\[5pt]
 +
&= \frac{\sin\dfrac{u}{2}}{\cos\dfrac{u}{2}}\\[8pt]
 +
&= \tan\frac{u}{2}\,\textrm{.}
 +
\end{align}</math>}}

Current revision

One could write \displaystyle \tan\frac{u}{2} as a quotient involving sine and cosine, and then continue with the formula for half-angles,

\displaystyle \tan\frac{u}{2} = \frac{\sin\dfrac{u}{2}}{\cos\dfrac{u}{2}} = \ldots

but because this leads to square roots and difficulties with keeping a check on the correct sign in front of the roots, it is perhaps simpler instead to go backwards and work with the right-hand side.

We write \displaystyle u as \displaystyle 2\cdot(u/2)and use the formula for double angles (so as to end up with a right-hand side which has \displaystyle u/2 as its argument),

\displaystyle \frac{\sin u}{1+\cos u} = \frac{\sin \Bigl(2\cdot\dfrac{u}{2}\Bigr)}{1+\cos\Bigl(2\cdot\dfrac{u}{2}\Bigr)} = \frac{2\cos\dfrac{u}{2}\cdot \sin\dfrac{u}{2}}{1+\cos^2\cfrac{u}{2}-\sin^2\cfrac{u}{2}}\,\textrm{.}

Writing the 1 in the denominator as \displaystyle \cos^2(u/2) + \sin^2(u/2) using the Pythagorean identity,

\displaystyle \begin{align}

\frac{2\cos\dfrac{u}{2}\cdot\sin\dfrac{u}{2}}{1+\cos^2\dfrac{u}{2}-\sin^2\dfrac{u}{2}} &= \frac{2\cos\dfrac{u}{2}\sin\dfrac{u}{2}}{\cos^2\dfrac{u}{2} + \sin^2\dfrac{u}{2} + \cos^2\dfrac{u}{2} - \sin^2\dfrac{u}{2}}\\[8pt] &= \frac{2\cos\dfrac{u}{2}\sin\dfrac{u}{2}}{2\cos^2\dfrac{u}{2}}\\[5pt] &= \frac{\sin\dfrac{u}{2}}{\cos\dfrac{u}{2}}\\[8pt] &= \tan\frac{u}{2}\,\textrm{.} \end{align}