Solution 4.1:7a

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:4_1_7a-1(2).gif </center> {{NAVCONTENT_STOP}} {{NAVCONTENT_START}} <center> Bild:4_1_7a-2(2).gif </center> {{NAVCONTENT_STOP}})
Current revision (11:19, 8 October 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
As the equation stands, it is difficult directly to know anything about the circle, but if we complete the square and combine ''x''- and ''y''-terms together in their own respective square terms, then we will have the equation in the standard form
-
<center> [[Bild:4_1_7a-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>(x-a)^2 + (y-b)^2 = r^2\,,</math>}}
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Bild:4_1_7a-2(2).gif]] </center>
+
and we will then be able to read off the circle's centre and radius.
-
{{NAVCONTENT_STOP}}
+
 
 +
If we take the ''x''- and ''y''-terms on the left-hand side and complete the square, we get
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
x^2 + 2x &= (x+1)^2-1^2\,,\\[5pt]
 +
y^2 - 2y &= (y-1)^2-1^2\,,
 +
\end{align}</math>}}
 +
 
 +
and then the whole equation can be written as
 +
 
 +
{{Displayed math||<math>(x+1)^2 - 1^2 + (y-1)^2 - 1^2 = 1\,,</math>}}
 +
 
 +
or, with the constants moved to the right-hand side,
 +
 
 +
{{Displayed math||<math>(x+1)^2 + (y-1)^2 = 3\,\textrm{.}</math>}}
 +
 
 +
This is a circle having its centre at (-1,1) and radius <math>\sqrt{3}\,</math>.
 +
 
 +
 
 +
<center> [[Image:4_1_7a-2(2).gif]] </center>

Current revision

As the equation stands, it is difficult directly to know anything about the circle, but if we complete the square and combine x- and y-terms together in their own respective square terms, then we will have the equation in the standard form

\displaystyle (x-a)^2 + (y-b)^2 = r^2\,,

and we will then be able to read off the circle's centre and radius.

If we take the x- and y-terms on the left-hand side and complete the square, we get

\displaystyle \begin{align}

x^2 + 2x &= (x+1)^2-1^2\,,\\[5pt] y^2 - 2y &= (y-1)^2-1^2\,, \end{align}

and then the whole equation can be written as

\displaystyle (x+1)^2 - 1^2 + (y-1)^2 - 1^2 = 1\,,

or, with the constants moved to the right-hand side,

\displaystyle (x+1)^2 + (y-1)^2 = 3\,\textrm{.}

This is a circle having its centre at (-1,1) and radius \displaystyle \sqrt{3}\,.


Image:4_1_7a-2(2).gif