Solution 4.1:3c
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Robot: Automated text replacement (-[[Bild: +[[Image:)) |
m |
||
| (2 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{ | + | In this right-angled triangle, the side of length 17 is the hypotenuse (it is the side which is opposite the right angle). The Pythagorean theorem then gives |
| - | < | + | |
| - | {{ | + | {{Displayed math||<math>17^2 = 8^2 + x^2</math>}} |
| + | |||
| + | or | ||
| + | |||
| + | {{Displayed math||<math>x^2 = 17^2 - 8^2\,\textrm{.}</math>}} | ||
| + | |||
| + | We get | ||
| + | |||
| + | {{Displayed math||<math>\begin{align} | ||
| + | x &= \sqrt{17^2-8^2} = \sqrt{289-64} = \sqrt{225}\\[5pt] | ||
| + | &= \sqrt{9\cdot 25} = \sqrt{3^2\cdot 5^2} = 3\cdot 5 = 15\,\textrm{.} | ||
| + | \end{align}</math>}} | ||
Current revision
In this right-angled triangle, the side of length 17 is the hypotenuse (it is the side which is opposite the right angle). The Pythagorean theorem then gives
| \displaystyle 17^2 = 8^2 + x^2 |
or
| \displaystyle x^2 = 17^2 - 8^2\,\textrm{.} |
We get
| \displaystyle \begin{align}
x &= \sqrt{17^2-8^2} = \sqrt{289-64} = \sqrt{225}\\[5pt] &= \sqrt{9\cdot 25} = \sqrt{3^2\cdot 5^2} = 3\cdot 5 = 15\,\textrm{.} \end{align} |
