Solution 3.3:6a

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Lösning 3.3:6a moved to Solution 3.3:6a: Robot: moved page)
Current revision (07:53, 2 October 2008) (edit) (undo)
m
 
(2 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
The calculator does not have button for <math>\log_{3}</math>, but it does have one for the natural logarithm ln, so we need to rewrite <math>\log_{3}4</math> in terms of ln.
-
<center> [[Image:3_3_6a-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
If we go back to the definition of the logarithm, we see that <math>\log _{3}4</math> is that number which satisfies
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Image:3_3_6a-2(2).gif]] </center>
+
{{Displayed math||<math>3^{\log _{3}4} = 4\,\textrm{.}</math>}}
-
{{NAVCONTENT_STOP}}
+
 
-
[[Image:3_3_6_a.gif|center]]
+
Now, take the natural logarithm of both sides,
 +
 
 +
{{Displayed math||<math>\ln 3^{\log _{3}4}=\ln 4\,\textrm{.}</math>}}
 +
 
 +
Using the logarithm law, <math>\lg a^b = b\lg a</math>, the left-hand side can be written as <math>\log_{3}4\cdot\ln 3</math> and the relation is
 +
 
 +
{{Displayed math||<math>\log_{3}4\cdot \ln 3 = \ln 4\,\textrm{.}</math>}}
 +
 
 +
Thus, after dividing by <math>\ln 3</math>, we have
 +
 
 +
{{Displayed math||<math>\log_{3}4 = \frac{\ln 4}{\ln 3} = \frac{1\textrm{.}386294\,\ldots}{1\textrm{.}098612\,\ldots} = 1\textrm{.}2618595\,\ldots</math>}}
 +
 
 +
which gives 1.262 as the rounded-off answer.
 +
 
 +
 
 +
Note: On the calculator, the answer is obtained by pressing the buttons
 +
 
 +
<center>
 +
{|
 +
||
 +
{| border="1" cellpadding="3" cellspacing="0"
 +
|width="30px" align="center"|4
 +
|}
 +
||&nbsp;&nbsp;
 +
||
 +
{| border="1" cellpadding="3" cellspacing="0"
 +
|width="30px" align="center"|LN
 +
|}
 +
||&nbsp;&nbsp;
 +
||
 +
{| border="1" cellpadding="3" cellspacing="0"
 +
|width="30px" align="center"|÷
 +
|}
 +
||&nbsp;&nbsp;
 +
||
 +
{| border="1" cellpadding="3" cellspacing="0"
 +
|width="30px" align="center"|3
 +
|}
 +
||&nbsp;&nbsp;
 +
||
 +
{| border="1" cellpadding="3" cellspacing="0"
 +
|width="30px" align="center"|LN
 +
|}
 +
||&nbsp;&nbsp;
 +
||
 +
{| border="1" cellpadding="3" cellspacing="0"
 +
|width="30px" align="center"|=
 +
|}
 +
|}
 +
</center>

Current revision

The calculator does not have button for \displaystyle \log_{3}, but it does have one for the natural logarithm ln, so we need to rewrite \displaystyle \log_{3}4 in terms of ln.

If we go back to the definition of the logarithm, we see that \displaystyle \log _{3}4 is that number which satisfies

\displaystyle 3^{\log _{3}4} = 4\,\textrm{.}

Now, take the natural logarithm of both sides,

\displaystyle \ln 3^{\log _{3}4}=\ln 4\,\textrm{.}

Using the logarithm law, \displaystyle \lg a^b = b\lg a, the left-hand side can be written as \displaystyle \log_{3}4\cdot\ln 3 and the relation is

\displaystyle \log_{3}4\cdot \ln 3 = \ln 4\,\textrm{.}

Thus, after dividing by \displaystyle \ln 3, we have

\displaystyle \log_{3}4 = \frac{\ln 4}{\ln 3} = \frac{1\textrm{.}386294\,\ldots}{1\textrm{.}098612\,\ldots} = 1\textrm{.}2618595\,\ldots

which gives 1.262 as the rounded-off answer.


Note: On the calculator, the answer is obtained by pressing the buttons

4
  
LN
  
÷
  
3
  
LN
  
=