Solution 3.3:3g
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Lösning 3.3:3g moved to Solution 3.3:3g: Robot: moved page) |
m |
||
| (One intermediate revision not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{ | + | Using the logarithm law, <math>\lg a-\lg b = \lg\frac{a}{b}\,</math>, the expression can be calculated as |
| - | < | + | |
| - | {{ | + | {{Displayed math||<math>\log_3 12 - \log_3 4 = \log_3\frac{12}{4} = \log _3 3 = 1\,\textrm{.}</math>}} |
| + | |||
| + | Another way is to write <math>12 = 3\cdot 4</math> and use the logarithm law, | ||
| + | <math>\lg (ab) = \lg a + \lg b\,</math>, | ||
| + | |||
| + | {{Displayed math||<math>\begin{align} | ||
| + | \log _{3}12 - \log _{3}4 | ||
| + | &= \log_{3}(3\cdot 4) - \log_{3} 4\\[5pt] | ||
| + | &= \log_{3}3 + \log _{3}4 - \log _{3}4\\[5pt] | ||
| + | &= \log _{3}3\\[5pt] | ||
| + | &= 1\,\textrm{.} | ||
| + | \end{align}</math>}} | ||
Current revision
Using the logarithm law, \displaystyle \lg a-\lg b = \lg\frac{a}{b}\,, the expression can be calculated as
| \displaystyle \log_3 12 - \log_3 4 = \log_3\frac{12}{4} = \log _3 3 = 1\,\textrm{.} |
Another way is to write \displaystyle 12 = 3\cdot 4 and use the logarithm law, \displaystyle \lg (ab) = \lg a + \lg b\,,
| \displaystyle \begin{align}
\log _{3}12 - \log _{3}4 &= \log_{3}(3\cdot 4) - \log_{3} 4\\[5pt] &= \log_{3}3 + \log _{3}4 - \log _{3}4\\[5pt] &= \log _{3}3\\[5pt] &= 1\,\textrm{.} \end{align} |
