Solution 3.2:5

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Current revision (12:58, 1 October 2008) (edit) (undo)
m
 
Line 1: Line 1:
After squaring both sides, we obtain the equation
After squaring both sides, we obtain the equation
 +
{{Displayed math||<math>3x-2 = (2-x)^2</math>|(*)}}
-
<math>3x-2=\left( 2-x \right)^{2}\quad \quad (*)</math>
+
and if we expand the right-hand side and then collect the terms, we get
-
 
+
-
 
+
-
and if we expand the right-hand side and then collect gather the terms, we get
+
-
 
+
-
 
+
-
<math>x^{2}-7x+6=0</math>
+
 +
{{Displayed math||<math>x^{2}-7x+6=0\,\textrm{.}</math>}}
Completing the square of the left-hand side, we obtain
Completing the square of the left-hand side, we obtain
-
 
+
{{Displayed math||<math>\begin{align}
-
<math>\begin{align}
+
x^{2}-7x+6
-
& x^{2}-7x+6=\left( x-\frac{7}{2} \right)^{2}-\left( \frac{7}{2} \right)^{2}+6 \\
+
&= \Bigl(x-\frac{7}{2}\Bigr)^2 - \Bigl(\frac{7}{2}\Bigr)^2+6\\[5pt]
-
& =\left( x-\frac{7}{2} \right)^{2}-\frac{49}{4}+\frac{24}{4} \\
+
&= \Bigl(x-\frac{7}{2}\Bigr)^2 - \frac{49}{4} + \frac{24}{4}\\[5pt]
-
& =\left( x-\frac{7}{2} \right)^{2}-\frac{25}{4} \\
+
&= \Bigl(x-\frac{7}{2}\Bigr)^2 - \frac{25}{4}
-
\end{align}</math>
+
\end{align}</math>}}
which means that the equation can be written as
which means that the equation can be written as
-
 
+
{{Displayed math||<math>\Bigl(x-\frac{7}{2}\Bigr)^2 = \frac{25}{4}</math>}}
-
<math>\left( x-\frac{7}{2} \right)^{2}=\frac{25}{4}</math>
+
-
 
+
and the solutions are therefore
and the solutions are therefore
 +
:*<math>x = \frac{7}{2} + \sqrt{\frac{25}{4}} = \frac{7}{2} + \frac{5}{2} = \frac{12}{2} = 6\,,</math>
-
<math>\begin{align}
+
:*<math>x = \frac{7}{2} - \sqrt{\frac{25}{4}} = \frac{7}{2} - \frac{5}{2} = \frac{2}{2} = 1\,\textrm{.}</math>
-
& x=\frac{7}{2}+\sqrt{\frac{25}{4}=}\frac{7}{2}+\frac{5}{2}=\frac{12}{2}=6 \\
+
-
& x=\frac{7}{2}-\sqrt{\frac{25}{4}=}\frac{7}{2}-\frac{5}{2}=\frac{2}{2}=1 \\
+
-
\end{align}</math>
+
-
EQ6
+
-
Substituting
+
Substituting <math>x=1</math> and <math>x=6</math> into the quadratic equation (*) shows that we have solved the equation correctly.
-
<math>x=\text{1 }</math>
+
-
and
+
-
<math>x=\text{6 }</math>
+
-
into the quadratic equation (*) shows that we have solved the equation correctly.
+
-
 
+
:*''x''&nbsp;=&nbsp;1: <math>\ \text{LHS} = 3\cdot 1-2 = 1\ </math> and <math>\ \text{RHS} = (2-1)^2 = 1</math>
-
<math>x=\text{1 }</math>: LHS
+
-
<math>=3\centerdot 1-2=1</math>
+
-
and RHS
+
-
<math>=\left( 2-1 \right)^{2}=1</math>
+
 +
:*''x''&nbsp;=&nbsp;6: <math>\ \text{LHS} = 3\cdot 6-2 = 16\ </math> and <math>\ \text{RHS} = (2-6)^2 = 16</math>
-
<math>x=\text{6 }</math>: LHS
+
Finally, we need to sort away possible spurious roots to the root equation by verifying the solutions.
-
<math>=3\centerdot 6-2=16</math>
+
-
and RHS
+
-
<math>=\left( 2-6 \right)^{2}=16</math>
+
-
 
+
:*''x''&nbsp;=&nbsp;1: <math>\ \text{LHS} = \sqrt{3\cdot 1-2} = 1\ </math> and <math>\ \text{RHS} = 2-1 = 1</math>
-
Finally, we need to sort away possible false roots to the root equation by verifying the solutions.
+
-
 
+
-
 
+
-
<math>x=\text{1 }</math>: LHS
+
-
<math>=\sqrt{3\centerdot 1-2}=1</math>
+
-
and RHS
+
-
<math>=2-1=1</math>
+
 +
:*''x''&nbsp;=&nbsp;6: <math>\ \text{LHS} = \sqrt{3\cdot 6-2} = 4\ </math> and <math>\ \text{RHS} = 2-6 = -4</math>
-
<math>x=\text{6 }</math>: LHS
+
This shows that the root equation has the solution <math>x=1\,</math>.
-
<math>=\sqrt{3\centerdot 6-2}=4</math>
+
-
and RHS =
+
-
<math>=2-6=-4</math>
+
-
 
+
-
This shows that the root equation has the solution
+
-
<math>x=\text{1}</math>.
+

Current revision

After squaring both sides, we obtain the equation

\displaystyle 3x-2 = (2-x)^2 (*)

and if we expand the right-hand side and then collect the terms, we get

\displaystyle x^{2}-7x+6=0\,\textrm{.}

Completing the square of the left-hand side, we obtain

\displaystyle \begin{align}

x^{2}-7x+6 &= \Bigl(x-\frac{7}{2}\Bigr)^2 - \Bigl(\frac{7}{2}\Bigr)^2+6\\[5pt] &= \Bigl(x-\frac{7}{2}\Bigr)^2 - \frac{49}{4} + \frac{24}{4}\\[5pt] &= \Bigl(x-\frac{7}{2}\Bigr)^2 - \frac{25}{4} \end{align}

which means that the equation can be written as

\displaystyle \Bigl(x-\frac{7}{2}\Bigr)^2 = \frac{25}{4}

and the solutions are therefore

  • \displaystyle x = \frac{7}{2} + \sqrt{\frac{25}{4}} = \frac{7}{2} + \frac{5}{2} = \frac{12}{2} = 6\,,
  • \displaystyle x = \frac{7}{2} - \sqrt{\frac{25}{4}} = \frac{7}{2} - \frac{5}{2} = \frac{2}{2} = 1\,\textrm{.}

Substituting \displaystyle x=1 and \displaystyle x=6 into the quadratic equation (*) shows that we have solved the equation correctly.

  • x = 1: \displaystyle \ \text{LHS} = 3\cdot 1-2 = 1\ and \displaystyle \ \text{RHS} = (2-1)^2 = 1
  • x = 6: \displaystyle \ \text{LHS} = 3\cdot 6-2 = 16\ and \displaystyle \ \text{RHS} = (2-6)^2 = 16

Finally, we need to sort away possible spurious roots to the root equation by verifying the solutions.

  • x = 1: \displaystyle \ \text{LHS} = \sqrt{3\cdot 1-2} = 1\ and \displaystyle \ \text{RHS} = 2-1 = 1
  • x = 6: \displaystyle \ \text{LHS} = \sqrt{3\cdot 6-2} = 4\ and \displaystyle \ \text{RHS} = 2-6 = -4

This shows that the root equation has the solution \displaystyle x=1\,.