Solution 2.3:5b
From Förberedande kurs i matematik 1
(Difference between revisions)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_3_5b.gif </center> {{NAVCONTENT_STOP}}) |
m |
||
| (3 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{ | + | Instead of randomly trying different values of ''x'', it is better investigate the second-degree expression by completing the square, |
| - | + | ||
| - | {{ | + | {{Displayed math||<math>\begin{align} |
| + | 4x^{2} - 28x + 48 | ||
| + | &= 4(x^{2} - 7x + 12)\\[5pt] | ||
| + | &= 4\bigl((x-\tfrac{7}{2})^{2} - (\tfrac{7}{2})^{2} + 12\bigr)\\[5pt] | ||
| + | &= 4\bigl((x-\tfrac{7}{2})^{2} - \tfrac{49}{4} + \tfrac{48}{4}\bigr)\\[5pt] | ||
| + | &= 4\bigl((x-\tfrac{7}{2})^{2} - \tfrac{1}{4}\bigr)\\[5pt] | ||
| + | &= 4\bigl(x - \tfrac{7}{2}\bigr)^{2}-1\,\textrm{.} | ||
| + | \end{align}</math>}} | ||
| + | |||
| + | In the expression in which the square has been completed, we see that if, e.g. | ||
| + | <math>x=7/2</math>, then the whole expression is negative and equal to -1. | ||
| + | |||
| + | |||
| + | Note: All values of ''x'' between 3 and 4 give a negative value for the expression. | ||
Current revision
Instead of randomly trying different values of x, it is better investigate the second-degree expression by completing the square,
| \displaystyle \begin{align}
4x^{2} - 28x + 48 &= 4(x^{2} - 7x + 12)\\[5pt] &= 4\bigl((x-\tfrac{7}{2})^{2} - (\tfrac{7}{2})^{2} + 12\bigr)\\[5pt] &= 4\bigl((x-\tfrac{7}{2})^{2} - \tfrac{49}{4} + \tfrac{48}{4}\bigr)\\[5pt] &= 4\bigl((x-\tfrac{7}{2})^{2} - \tfrac{1}{4}\bigr)\\[5pt] &= 4\bigl(x - \tfrac{7}{2}\bigr)^{2}-1\,\textrm{.} \end{align} |
In the expression in which the square has been completed, we see that if, e.g. \displaystyle x=7/2, then the whole expression is negative and equal to -1.
Note: All values of x between 3 and 4 give a negative value for the expression.
