Solution 3.3:2h
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Lösning 3.3:2h moved to Solution 3.3:2h: Robot: moved page) |
|||
| Line 1: | Line 1: | ||
| - | {{ | + | The argument in the logarithm can be rewritten as |
| - | < | + | <math>\frac{1}{10^{2}}=10^{-2}</math> |
| - | {{ | + | and then the log law |
| + | <math>\lg a^{b}=b\lg a</math> | ||
| + | gives the rest: | ||
| + | |||
| + | |||
| + | <math>\lg \frac{1}{10^{2}}=\lg 10^{-2}=\left( -2 \right)\centerdot \lg 10=\left( -2 \right)\centerdot 1=-2</math> | ||
Revision as of 13:46, 25 September 2008
The argument in the logarithm can be rewritten as \displaystyle \frac{1}{10^{2}}=10^{-2} and then the log law \displaystyle \lg a^{b}=b\lg a gives the rest:
\displaystyle \lg \frac{1}{10^{2}}=\lg 10^{-2}=\left( -2 \right)\centerdot \lg 10=\left( -2 \right)\centerdot 1=-2
