Solution 2.1:8c

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Current revision (12:41, 23 September 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
When we come across large and complicated expressions, we have to work step by step; as a first goal, we can multiply the top and bottom of the fraction
-
<center> [[Bild:2_1_8c-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\frac{1}{1+\dfrac{1}{1+x}}</math>}}
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Bild:2_1_8c-2(2).gif]] </center>
+
by <math>1+x</math>, so as to reduce it to an expression having one fraction sign
-
{{NAVCONTENT_STOP}}
+
 
 +
{{Displayed math||<math>\begin{align}
 +
\frac{1}{1+\dfrac{1}{1+\dfrac{1}{1+x}}}
 +
&= \frac{1}{1+\dfrac{1}{1+\dfrac{1}{1+x}}\cdot\dfrac{1+x}{1+x}}\\[8pt]
 +
&= \frac{1}{1+\dfrac{1+x}{\Bigl(1+\dfrac{1}{1+x}\Bigr)(1+x)}}\\[8pt]
 +
&= \frac{1}{1+\dfrac{1+x}{1+x+\dfrac{1+x}{1+x}}}\\[8pt]
 +
&= \frac{1}{1+\dfrac{1+x}{1+x+1}}\\[8pt]
 +
&= \frac{1}{1+\dfrac{x+1}{x+2}}\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
The next step is to multiply the top and bottom of our new expression by
 +
<math>x+2</math>, so as to obtain the final answer,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\frac{1}{1+\dfrac{x+1}{x+2}}\cdot\frac{x+2}{x+2}
 +
&= \frac{x+2}{\Bigl(1+\dfrac{x+1}{x+2}\Bigr)(x+2)}\\[8pt]
 +
&= \frac{x+2}{x+2+\dfrac{x+1}{x+2}(x+2)}\\[8pt]
 +
&= \frac{x+2}{x+2+x+1}\\[8pt]
 +
&= \frac{x+2}{2x+3}\,\textrm{.}
 +
\end{align}</math>}}

Current revision

When we come across large and complicated expressions, we have to work step by step; as a first goal, we can multiply the top and bottom of the fraction

\displaystyle \frac{1}{1+\dfrac{1}{1+x}}

by \displaystyle 1+x, so as to reduce it to an expression having one fraction sign

\displaystyle \begin{align}

\frac{1}{1+\dfrac{1}{1+\dfrac{1}{1+x}}} &= \frac{1}{1+\dfrac{1}{1+\dfrac{1}{1+x}}\cdot\dfrac{1+x}{1+x}}\\[8pt] &= \frac{1}{1+\dfrac{1+x}{\Bigl(1+\dfrac{1}{1+x}\Bigr)(1+x)}}\\[8pt] &= \frac{1}{1+\dfrac{1+x}{1+x+\dfrac{1+x}{1+x}}}\\[8pt] &= \frac{1}{1+\dfrac{1+x}{1+x+1}}\\[8pt] &= \frac{1}{1+\dfrac{x+1}{x+2}}\,\textrm{.} \end{align}

The next step is to multiply the top and bottom of our new expression by \displaystyle x+2, so as to obtain the final answer,

\displaystyle \begin{align}

\frac{1}{1+\dfrac{x+1}{x+2}}\cdot\frac{x+2}{x+2} &= \frac{x+2}{\Bigl(1+\dfrac{x+1}{x+2}\Bigr)(x+2)}\\[8pt] &= \frac{x+2}{x+2+\dfrac{x+1}{x+2}(x+2)}\\[8pt] &= \frac{x+2}{x+2+x+1}\\[8pt] &= \frac{x+2}{2x+3}\,\textrm{.} \end{align}