Solution 1.3:6d
From Förberedande kurs i matematik 1
(Difference between revisions)
m |
|||
| Line 1: | Line 1: | ||
| - | One way to compare the two numbers is to rewrite the power | + | One way to compare the two numbers is to rewrite the power <math>\bigl(5^{\frac{1}{3}}\bigr)^{4}</math> so that it has the same exponent as <math>400^{\frac{1}{3}}</math>, |
| - | <math>\ | + | |
| - | so that it has the same exponent as | + | |
| - | <math>400^{\frac{1}{3}}</math>, | + | |
| + | {{Displayed math||<math>\bigl(5^{\frac{1}{3}}\bigr)^{4} = 5^{\frac{1}{3}\cdot 4} = 5^{4\cdot\frac{1}{3}} = \bigl(5^{4}\bigr)^{\frac{1}{3}} = \bigl(5\cdot 5\cdot 5\cdot 5\bigr)^{\frac{1}{3}} = 625^{\frac{1}{3}}\,</math>.}} | ||
| - | + | Now, we see that <math>\bigl(5^{\frac{1}{3}}\bigr)^{4} > 400^{\frac{1}{3}}</math>, because <math>625 > 400</math> and the exponent 1/3 is positive. | |
| - | + | ||
| - | Now, we see that | + | |
| - | <math>\ | + | |
| - | <math>625>400</math> | + | |
| - | and the exponent | + | |
| - | + | ||
| - | is positive. | + | |
Current revision
One way to compare the two numbers is to rewrite the power \displaystyle \bigl(5^{\frac{1}{3}}\bigr)^{4} so that it has the same exponent as \displaystyle 400^{\frac{1}{3}},
| \displaystyle \bigl(5^{\frac{1}{3}}\bigr)^{4} = 5^{\frac{1}{3}\cdot 4} = 5^{4\cdot\frac{1}{3}} = \bigl(5^{4}\bigr)^{\frac{1}{3}} = \bigl(5\cdot 5\cdot 5\cdot 5\bigr)^{\frac{1}{3}} = 625^{\frac{1}{3}}\,. |
Now, we see that \displaystyle \bigl(5^{\frac{1}{3}}\bigr)^{4} > 400^{\frac{1}{3}}, because \displaystyle 625 > 400 and the exponent 1/3 is positive.
