Solution 1.3:3e
From Förberedande kurs i matematik 1
(Difference between revisions)
m |
|||
| Line 1: | Line 1: | ||
| - | The number | + | The number 9 can be written as <math>9=3\cdot 3=3^{2}</math> and hence the denominator in the expression is equal to |
| - | + | ||
| - | can be written as | + | |
| - | <math>9=3\ | + | |
| - | + | {{Displayed math||<math>9^{2} = (3^{2})^{2} = 3^{2\cdot 2} = 3^{4}\,</math>.}} | |
| - | + | ||
| - | + | ||
| - | <math>9^{2}= | + | |
The whole quotient becomes | The whole quotient becomes | ||
| - | + | {{Displayed math||<math>\frac{3}{9^{2}}=\frac{3^{1}}{3^{4}}=3^{1-4}=3^{^{-3}}</math>.}} | |
| - | <math>\frac{3}{9^{2}}=\frac{3^{1}}{3^{4}}=3^{1-4}=3^{^{-3}}</math> | + | |
Current revision
The number 9 can be written as \displaystyle 9=3\cdot 3=3^{2} and hence the denominator in the expression is equal to
| \displaystyle 9^{2} = (3^{2})^{2} = 3^{2\cdot 2} = 3^{4}\,. |
The whole quotient becomes
| \displaystyle \frac{3}{9^{2}}=\frac{3^{1}}{3^{4}}=3^{1-4}=3^{^{-3}}. |
