Solution 2.3:10a
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Lösning 2.3:10a moved to Solution 2.3:10a: Robot: moved page) |
|||
| Line 1: | Line 1: | ||
| - | {{ | + | Individually, the inequalities |
| - | < | + | <math>y\ge x^{\text{2 }}</math> |
| - | {{ | + | and |
| + | <math>y\le \text{1 }</math> | ||
| + | define the region above the parabola | ||
| + | <math>y=x^{\text{2}}\text{ }</math> | ||
| + | and under the line | ||
| + | <math>y=\text{1}</math>, respectively. | ||
| + | |||
[[Image:2_3_10_a.gif|center]] | [[Image:2_3_10_a.gif|center]] | ||
| + | Those points which satisfy both inequalities lie in the region above the parabola, but below the line | ||
| + | <math>y=\text{1}</math> | ||
| + | |||
[[Image:2_3_10_a2.gif|center]] | [[Image:2_3_10_a2.gif|center]] | ||
Revision as of 12:19, 21 September 2008
Individually, the inequalities \displaystyle y\ge x^{\text{2 }} and \displaystyle y\le \text{1 } define the region above the parabola \displaystyle y=x^{\text{2}}\text{ } and under the line \displaystyle y=\text{1}, respectively.
Those points which satisfy both inequalities lie in the region above the parabola, but below the line \displaystyle y=\text{1}


